
AFRL-IF-RS-TR-2000-137
Final Technical Report
September 2000

MODULAR CONSTRUCTION OF VERY LARGE
KNOWLEDGE BASES

David Espinosa

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F102

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

DTIG QUALITY H7S?E£BBD 4

20001222 108
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

MODULAR CONSTRUCTION OF VERY LARGE KNOWLEDGE
BASES

David Espinosa

Contractor: Kestral Institute
Contract Number: F30602-97-C-0146
Effective Date of Contract: 30 May 1997
Contract Expiration Date: 30 September 1999
Short Title of Work: Modular Construction of Very

Large Knowledge Bases
Period of Work Covered: May 97 - Sep 99

Principal Investigator: David Expinosa
Phone: (415)493-6871

AFRL Project Engineer: Craig S. Anken
Phone: (315)330-2074

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Craig S. Anken, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

SEPTEMBER 2000
3. REPORT TYPE AND DATES COVERED

 Final May 97 - Sep 99
4. TITLE AND SUBTITLE

MODULAR CONSTRUCTION OF VERY LARGE KNOWLEDGE BASES

6. AUTHOR(S)

David Espinosa

5. FUNDING NUMBERS

C - F30602-97-C-0146
PE- 62301E
PR- IIST
TA- 00
WU-02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Kestrel Institute
3260 Hillview Avenue
Palo Alto CA 04304

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTD
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-137

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Craig S. Anken/IFTD/(315) 330-2074

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words}

In this report, we describe work done at Kestrel under the DARPA High Performance Knowledge Bases program.. The goal
of the program is to develop methods for structuring large knowledge-bases and reasoning efficiently in them.

The report contains four sections. In the first, we describe our work on the crisis management challenge problems. In the
second, we describe our Designware system for semi-automated program synthesis. In the third, we present a detailed
description of parametrized specifications, an important tool for combining theory refinements. In the fourth, we describe
limits, interpretation, and slicing, all important tools for constructing, deconstructing, and relating theories.

14. SUBJECT TERMS

Knowledge-Bases, Formal Methods, Reasoning and Logic
15. NUMBER OF PAGES

72
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

1. Introduction 4
2. Challenge problem experiments 4

2.1. Conventional approach 6
2.1.1.Escalation and retaliation 6
2.1.2.Hostility levels 7
2.1.3.Procedural attachment 8
2.1.4.Axiomatic Reasoning 9
2.1.5.Example 11

2.2. Finite models • 12
2.3. Parametric queries 13
2.4. Conditional formation 14
2.5. Temporal reasoner 15

2.5.1.Table generation with Specware 16
3. Designware 16

3.1. Overview 17
3.2. Basic Concepts 18

3.2.1.Specifications 18
3.2.2.Morphisms 19
3.2.3.The Category of Specs 21
3.2.4.Diagrams 22
3.2.5.The Structuring of Specifications 23
3.2.6.Refinement and Diagrams 23
3.2.7.Logic Morphisms and Code Generation 24

3.3. Software Development by Refinement 25
3.3.1.Constructing Specifications 25
3.3.2.Constructing Refinements 25

3.4. Scaling up 26
3.4.1.Design by Classification: Taxonomies of Refinements 27
3.4.2.Tactics 29

3.5. Summary ■ 30
4. Parametrized specifications • • • • 30

4.1. Introduction 31
4.1.1.Parametric specifications 31
4.1.2.Elements of categorical model theory 32
4.1.3.0utline of the paper 33

4.2. Theories and models, categorically 34

1/2

4.2.1.Classifying categories 34
4.2.2.Coherent categories 34
4.2.3.Interpretations and models 36
4.2.4.Parametrized specifications as functors:

syntactic vs semantic definitions 36
4.3. Syntactic vs semantic properties of functors 38

4.3.1.Preliminaries 38
4.3.2.Basic results 39

4.4. Characterizing parametric specifications 42
4.5. Conclusions and further work 47
Other mathematical methods 48
5.1. Limits 48
5.2. Interpretations 53
5.3. Slicing 55

1. Introduction

In this report, we describe work done at Kestrel under the DARPA High Perfor-
mance Knowledge Bases program. The goal of the program is to develop methods for
structuring large knowledge bases and reasoning efficiently in them.

The report contains four sections. In the first, we describe our work on the crisis
management challenge problems. In the second, we describe our Designware system
for semi-automated program synthesis. In the third, we present a detailed description
of parametrized specifications, an important tool for combining theory refinements.
In the fourth, we describe limits, interpretations, and slicing, all important tools for
constructing, deconstructing, and relating theories.

2. Challenge problem experiments

Kestrel applied its work on the technology base for HPKB to address higher perfor-
mance aspects of the program's goals. Our objective was to show how the tech base
underlying technology could provide meaningful speedups on large problems, and to
show potential for speedup on even larger problems. We are encouraged by our find-
ings so far: automatically-generated solvers produced speedups ranging from two to
five orders of magnitude, with potential applicability also to large KB acquisition
problems.

SRI graciously suggested challenge questions and furnished Kestrel with base ax-
iom sets and scenario axiom sets, and helped with our analyses. We measured baseline
performance and three knowledge compilation approaches:

Method / TFQ 236b 236c 236d 236e 210a 210b 210c
1. Conventional approach

(answer extraction)
200 s 199 s 204 s 181s 94 s 83 s 82 s

2. Knowledge compilation
(finite models)

39 ms
(5000x)

39 ms
(4600x)

2.3 ms
(40000x)

3.4 ms
(24000x)

3.2 ms
(25000x)

3. Knowledge compilation
(schemas)

310 ms
(600x)

330 ms
(600x)

310 ms
(600x)

310 ms
(600x)

All times were measured on a Sun Ultrasparc 60.

Each table row shows the time for a different approach:

Conventional approach The conventional approach is answer extraction via tracing
of unification substitution ("answer literals"), which SRI used for the TFQs. This
technique is due to Green [16]. For this baseline, we used SRI's SNARK, a good,
well-suited, fast prover.

Knowledge Compilation via Finite Models Typically, major portions of a
knowledge base have a finite model. For these portions, the model can be pre-
compiled from the axiom set and incorporated into the prover via procedural at-
tachment to predicates. We used a simple forward closure to compute the model as
a set of ground literals. Another point of view is that we used partial evaluation,
holding the axiom base fixed. Question answering is then done via simple operations
on sets and relations. These operations could be further optimized using bit vectors,
and we estimate that another two orders of magnitude should be achievable.

Knowledge Compilation via Schemata Several hundred of the axioms in the
HPKB crisis management database have a similar form, varying only by the types of
agents, actions, and interests involved. Because an axiom can only mention specific,
concrete types, we cannot write a single axiom that generalizes all of them; however,
we can summarize them in a table. Then, instead of using a prover for queries, we use
table lookup, which is much faster. We could integrate this technique into a general
prover for use on suitable subproblems.

Knowledge Compilation via Conditional Compilation (not shown) By work-
ing with abstract rather than concrete data, a prover can be outfitted to construct
a program that computes a result later, when the actual concrete data is given to
it. This principle is also used in partial evaluation. The program typically includes
conditional branches that depend on the actual concrete data values, hence the name
"conditional compilation". This technique is also due to Green [16].

We then optimize the resulting program using Kestrel's C code generator. The
resulting program is eight orders of magnitude faster than standard answer extraction
and produces answers in microseconds rather than seconds. Although this result is
surprising, it was done on too small a problem (several hundred clauses) to be anything
but suggestive. Extending this approach would require additional research on problem
solving via program synthesis.

In our work, we began with SRI's answers, and, instead of trying to improve them,
we focused on knowledge compilation to produce them more quickly. Also, we have
been producing answers without explanations, but we expect it would not be difficult
to generate the same explanations as a standard prover.

Scalability We expect our knowledge compilation techniques to scale, relative to
"pure" inference provers. That is, the compilation techniques should maintain a sig-
nificant advantage as question difficulty and knowledge base size increase. This is no
surprise; special problem solvers are often used to assist provers. However, in our case,
the special problem solvers were automatically generated.

We also believe that knowledge compilation can lead to better answers. Although
answering (search) speed is not an evaluated property for HPKB, search speed trans-
lates into more efficient searches and therefore into larger spaces searched. Larger
searches translate into ability to answer harder questions. To pursue this issue, it is
possible to measure the increase the size of the explored space as a function of degree
of compilation for typical questions.

Knowledge acquisition The acquisition of useful, consistent knowledge bases is a
difficult problem. Fast query responses help to discover omissions and inconsistencies,
but more systematic analysis techniques are needed. Knowledge compilation will al-
low more analyses, some fast enough to run in the background as new knowledge is
entered.

We have not yet developed industrial-strength knowledge compilation tools, al-
though it appears feasible. Knowledge compilation will be essential for answering
computationally intensive queries such as the network intervention and repair prob-
lems for which we generated algorithms earlier in the HPKB program. Large KBs
will also profit from the modularization and composition mechanisms available in
Specware.

2.1. Conventional approach

In this section, we describe our first approach to the HPKB Crisis Mamagement
challenge problems. This work is unusual because it combine deductive and procedu-
ral reasoning using the procedural attachement mechanism of the SNARK theorem
prover. In the competition, the solutions we obtain to this class of problems were
markedly superior to those of the competing team.

2.1.1. Escalation and retaliation Parametrized question 210 was unusual be-
cause, in addition to ordinary axiomatic reasoning, it required the use of a procedural
attachment to get some of the effects of nonmonotonic reasoning. Instances of the
question require us to determine whether a particular action in a particular context
constitutes an escalation, a de-escalation, or a retaliation.

The contexts include both historical incidents and fictional scenarios for the Crisis
Management Challenge Problem (CMCP). We regard an action in a context as an
escalation if it is in response to another, less hostile action. Conversely, an action is
a de-escalation if it is in response to a more hostile action. Finally, an action is a
retaliation for another if it is a reaction to the other and the two actions are opposed
to each other or have contrary interests.

The formal encodings of the incidents and scenarios contain a detailed account of
the agents that each action opposes, the interests that motivate them, and the causal

relationship between actions; this allows us to deal with questions about retaliation.
To solve questions involving escalation, however, it is necessary to estimate the level
of hostility of each action.

2.1.2. Hostility levels Because there are infinitely many possible individual ac-
tions, we cannot assign hostility levels to actions individually. Instead, we compute
the hostility level of an action according to its sort and other characteristics, because
there is a manageable number of these characteristics, and because they are known
in advance.

One notion of hostility level was proposed by Herman Kahn ("On Escalation"),
who suggested a forty-four-stage linear scale. This idea was modified by a CMCP
subject-matter expert during an interview ("Knowledge Acquisition for Crisis Man-
agement: Interests and Actions," John Kingston, AIAI, University of Edinburgh). He
suggested a multi-dimensional scale for hostility levels, because of the difficulty in
comparing actions of different kinds. Our own scale currently has three components:
damage level, weapon level, and proximity level.

The damage level is an estimate of what kind of damage the action involves. A
military attack, for example, is likely to involve population damage, which is the most
severe level. Public criticism of one government by another is likely to reach only the
verbal damage level, which is much less severe.

The weapon level reflects what sort of weapons the attack involves. For example,
an attack using biological weapons has wmd-level, the most severe, because it uses
a weapon of mass destruction (WMD). An attack that involves no weapons has the
lowest weapon level of all.

The proximity level concerns the location of the attack. An attack on the heart of
another country has the most severe proximity level - an attack that is outside the
borders of the target country has the lowest proximity level.

All the actions in the scenarios and historical narratives are classified according
to their sort in the ontology. For instance, in the 1984-88 Tanker War historical
account, the invasion of Iran by Iraq is classified as a military-invasion; the action
in which Kuwait negotiates with other countries to protect its shipping is classified
as making-an-agreement. ^

For certain sorts, we provide a damage level and a weapon level. The proximity
level of an action is determined not by a sort but by the location of the attack.

For instance, if an action is of sort terrorist-attack, it is assigned
a population-damage-level and a target-indiscriminate-conventional-level
weapon level. If it is performed in the capital city of the target country,
it is of heart-proximity-level, the most severe.

Hostility levels of two actions can be compared using a lexicographic ordering.
More precisely, the action with the higher damage level has the higher hostility level;

if the damage levels are equal, the action with the higher weapon level has the higher
hostility level; and if both the damage levels and the weapon levels are equal, the
action with the higher proximity level has the higher hostility level.

For example, an attack that kills population is regarded as more severe than one
that only damages property, even if the first uses pistols (target-specific-weapon-level)
and is in on the outskirts of the target country (inside-proximity-level), while
the second uses a bomb (target-indiscriminate-conventional-level) and is in
the center of the target country (heart-proximity-level).

2.1.3. Procedural attachment It was impossible to use axioms in the ordinary
way to define hostility levels of actions, because of the nonmonotonicity of the prob-
lem. It is quite usual for an action to be of more than one sort; for example, one sort
may be a subsort of another, so an action of the first sort is also of the second sort.
If we use assignment axioms of the form

if ?action is of sort Ai
then damage-level(?action) = di

and an action is of two sorts Al and A2, it might be assigned conflicting damage levels
dl and d2, leading to an inconsistent axiom set.

For instance, one sort in the ontology, convene-task-f orce-to-monitor-responses,
is assigned a de-escalation damage level, which is very low, because it is involved
in truce making. This sort, however, is classified in the ontology as a subsort of a
larger sort, political action. Actions of this sort are assigned a verbal damage
level, which is somewhat more severe, because hostile political actions such as threat-
making are also of this sort.

The situation is illustrated by this table:

Sort

convene-task-force-to-monitor-responses
political-action

Damage level

de-escalation-damage-level
verbal-damage-level

At one stage in the CMCP Year 2 Scenario, the UN Secretary General persuades
Iran and the GCC to participate in a Persian Gulf regional forum. This action is classi-
fied in the scenario description as being of sort convene-task-f orce-to-monitor-responses.
Hence, the above assignment axiom can be applied to assign the action a de-escalation
damage level. Since the agreement of Iran and the GCC is also a political action, the
assignment axiom could be applied as well to assign it a verbal damage level, contra-
dicting the previous assignment.

We would prefer to compute the damage level of an action by using the smallest
subsort that includes the action and that has an assigned damage level, since the

8

smaller subsorts give more specific information. If a subsort has no assigned damage
level, we use the damage level of larger subsorts.

Such an operation is not monotonic: finding out new information, such as an
assignment of a damage level to a sort, could result in an inference becoming invalid.
For example, if an inference depended on the fact that the agreement has a verbal
damage level, and then we discover later that convening a task force has a lower
damage level, the earlier inference will no longer be valid.

Axiomatic reasoning can perform only monotonic inferences, which does not allow
the retraction of any conclusion as a result of discovering new evidence. Therefore,
instead of using axiomatic reasoning, we invoke a procedural attachment mechanism
to compute damage and weapon levels.

Procedural attachment is a SNARK feature that enables us to associate selected
predicate and function symbols in SNARK with Lisp functions that evaluate them.
This allows us to circumvent axiomatic reasoning when we have a procedural way of
determining the value of the symbol. In this case, we have procedural attachments
for the damage-level and weapon-level function symbols. In computing the level
for an action, the attachment looks at the sort(s) of that action. The damage and
weapon levels of the smallest sort with an assigned level is assigned as the damage
and weapon levels of the action. If there is more than one such smallest sort, the
highest of the levels is selected.

For example, in determining the damage level of the action in which Iran and the
GCC make the agreement, the function will assign the de-escalation damage level,
which is associated with the sort convene-task-f orce-to-monitor-responses. The
verbal damage level, which is associated with the sort political-action, is ig-
nored, because convene-task-f orce-to-monitor-responses is a proper subsort of
political-action - it is smaller.

2.1.4. Axiomatic Reasoning Although procedural attachment is used to com-
pute hostility levels, ordinary axiomatic reasoning is used to determine whether an
action in a narrative is to be regarded as an escalation, a de-escalation, or a retalia-
tion. For instance, one axiom states that an action is an escalation if it is caused by
another action and is of a greater hostility level than the earlier action. More precisely,
the escalation axiom is

(assertion
«=
(escalation ?action2 ?context)

(and
(occurs-in ?action2 ?context)
(cause-event-event* ?actionl ?action2)

(greater-hostility ?action2 ?actionl)))

:name escalation-if-in-response-to-less-hostile-action
:documentation "An ?action2 is an escalation in ?context
if it is in response to an ?actionl and is of greater hostility
level than ?actionl.")

A similar axiom for de-escalation is

(assertion
«=
(de-escalation ?action2 ?context)
(and
(occurs-in ?actionl ?context)
(cause-event-event* ?actionl ?action2)
(greater-hostility ?actionl ?action2)))

:name de-escalation-if-in-response-to-more-hostile-action
:documentation "An ?action2 is a de-escalation in ?context
if it is in response to an ?actionl that has a greater
hostility level")

There are other axioms for escalation and de-escalation too. For instance, an
action whose damage level is de-escalation (for example, a ceasefire) is automatically
regarded as a de-escalation.

An action is a retaliation for another action if it is caused by that action and the
two actions are opposed to each others agents or are motivated by opposing interests.
For instance, if ?agentl performs an action that damages the interests of ?agent2,
and in response ?agent2 performs an action that damages the interests of ?agentl,
the latter action is presumed to be a retaliation. More precisely, we have the retaliation
axiom

(assertion
«=
(retaliation ?action2 ?actionl ?context)
(and
(occurs-in ?action2 ?context)
(performed-by ?action2 ?agent2)
(performed-by ?actionl ?agentl)
(cause-event-event* ?actionl ?action2)
(or
(and (opposing ?actionl ?agent2)

(opposing ?action2 ?agentl))

10

(and (opposes-interest ?actionl ?interestl)
(supports-interest ?action2 ?interestl))

(and (supports-interest ?actionl ?interest2)
(opposes-interest ?action2 ?interest2)))))

:name retaliation-is-in-response-to-earlier-action
:documentation "A retaliation is an action caused by an earlier action,
such that the actions are opposed to each others agents or
the two actions have opposing interests.")

2.1.5. Example Let us see how these techniques applied to a sample Challenge
Problem. In the final evaluation, question TFQ210c asks: "In the 1984-8 Tanker War,
is the event in which Iraq accede to request of UN during 20 July 1987 a de-escalation
of conflict?" Note that the question is ungrammatical because it is generated auto-
matically from a template.

This question is formalized as follows:

(and (occurs-in ?action2 1984-1988-tanker-war)
(instance-of ?action2 accept)
(performed-by ?action2 iraq)
(action-involves ?action2 ?agreement)
(action-enabled-by ?action2 ?actionl)
(performed-by ?actionl united-nations)
(instance-of ?actionl making-an-agreement)
(temporal-bounds-contain
(day-fn 20 (month-fn July (year-fn 1987))) ?actionl)

(de-escalation ?action2 1984-1988-tanker-war))

Most of the formalization simply describes the event, paraphrasing the question. This
serves to bind to ?action2 the event under discussion. The key component of the
formalization is the final conjunct,

(de-escalation ?action2 1984-1988-tanker-war),

which asks if the action is a de-escalation.
By the axiom for de-escalation we gave earlier, the system knows that an action

is a de-escalation if it is in response to an earlier action of greater hostility. In the
formal description of the Tanker War, it discovers an axiom

(contributing-factor
iran-directly-challenges-ships-in-us-convoys
iraq-accepts-un-resolution-598)

11

In other words, a contributing factor in Iraq's acceptance of the UN resolution is the
fact that Iran has directly challenged ships in a US convoy.

An axiom in the knowledge base tells us that if one action is a contributing factor
in another, it is a cause of the other action:

(assertion
«=
(cause-event-event* ?eventl ?event2)
(contributing-factor ?eventl ?event2))

:name contributing-factor-implies-causes-indirectly
:documentation "If an event is a contributing factor for another,
it also causes it indirectly")

Therefore, Iran's challenge of the US convoy is a cause of Iraq's acceptance of the UN
resolution.

Acceptance of the UN resolution is declared in the formalization of the Tanker
War to be of sort making-an-agreement, which has a verbal damage level, which is
relatively low. On the other hand, Iran's challenge of the US convoy is declared to be of
sort threatening-action, which is declared to have damage level non-combat-act ion.
Since this damage level is higher than that of a verbal action, the hostility level of
Iran's challenge is higher than that of Iraq's acceptance of the UN resolution. This
is because the ordering on hostility levels has been asserted to be a lexicographic
ordering on its components.

In short, Iraq's acceptance of the UN resolution has been found to be in response
to another action of higher hostility. Hence, by the de-escalation axiom, it is a de-
escalation.

2.2. Finite models

In this approach, we observe that major portions of a KB have a finite model, and
that we can reason more quickly in this model than in the KB itself.

To build the model, we compute the transitive closure of the axioms, and attach to
each predicate the set of its instances. Then, to answer a query, we find the instances
satisfying each literal and combine them using intersection and union.

Although computing the transitive closure took some time, the resulting ground
unit KB was quite manageable in size. Query answering took less than a second,
and aggressive optimization probably could reduce the response time to under one
millisecond.

This technique works directly from a given KB, with little or no human interven-
tion. Although preprocessing is time-consuming, much of this work can be avoided if
the original KB is organized in tables of ground data.

12

2.3. Parametric queries

For parametric queries, such as PQ210, we found that axioms and explanations came
in symmetry groups. A general query asked once and for all could be reused by
instantiation to all members in a given symmetry group. For PQ210, we were able to
group over 200 axioms, thus representing about 1000 different explanations within a
single scheme.

Structuring a set of axioms in this way helped to identify missing axioms. Under
the sort assumption that a terrorist group is an instance of a criminal organization
we found that our added axioms could answre all queries under TQ210.

Knowledge is captured using generic templates that are summarized in tables
instead of enumerating very similiar axioms in a verbose mode.

For the first, and largest template

(prove-performed-meta-theorem)

proves the generic theorem that justifies retrieving answers by a simple table lookup
instead of quering the knowledge base.

(evaluate-interest-typically-underlies agent action)

performs this lookup, whereas

(ask-interest-typically-underlies agent action)

does the corresponding theorem proving directly. However, given the meta-proof,
we obtain an explanation for each instance by simple substitution of the parameter
agent and action sorts into the explanation (which we cannot access yet as we need a
compatible version of OKBC and other SRI/SAIC installed layers on top of SNARK
and LISP).

The timing effect on precompiling a generic query answer function for the template
class of axioms which constituted about 90 percent of the available data is dramatic.
To answer, for instance, what the interests that typically underly a country to conduct
a peace keeping mission SNARK generates the last answer instance at the 7,101
derived clause:

Summary of computation:
7,101 formulas have been input or derived (from 5,454 formulas).
6,609 (93%) were retained. Of these,

793 (12°/,) were simplified or subsumed later,
0 (0%) were deleted later because the agenda was full, and

5,816 (88%) are still being kept.

13

Run time in seconds excluding printing time:
1.5 2% Resolution
0.5 07, Paramodulation
14.0 14% Forward subsumption
2.1 2% Backward subsumption
2.2 2% Forward simplification
0.7 1% Backward simplification

58.5 60% Sorts
9.9 10% Kif input
8.8 9% Other

98.2 Total

The alternative available answering mechanism that uses a simple table lookup is in
contrast instantaneous.

From a meta theorem, we can generate the table by extracting all model axioms
as answers and have the query answering mechanism dispatch on the sorts in the
table entries. The table can naturaly also be generated a priori, because the axioms
reflect the nature of the table.

2.4. Conditional formation

In this approach, we convert axioms into conditional expressions, then use these
expressions to create a highly optimized C program. For example, if we begin with
the axiom

nation(x) iff x = USA or x = England or ...

we generate this program

boolean nation (object x) {
(x == USA) I I
(x == England) I I ...

}

Using this method, we obtained dramatic speedups (answers in microseconds), but we
only tried small examples. Still, potentially enormous improvements in performance
are plausible.

14

2.5. Temporal reasoner

Reasoning about events in time is pervasive in the HPKB knowledge base. The tem-
poral logic covered by the Allen temporal relations extended with date reasoning has
been adequate to capture most of the relevant properties.

In part of Kestrel's collaboration with Cycorp we developed a temporal reasoner
based on the Allen temporal relations in Cycorp's knowledge base programming lan-
guage //LISP. The temporal reasoner maintains a data base of relations between time
intervals. Intervals I and J can be related in the following ways:

1. before(7, J): /is strictly before J.
2. meets (7, J): I ends where J starts.
3. join(7, J): I starts strictly before J and ends inside J.
4. ??(/, J): I starts strictly before J and ends where J ends.
5. ??(/, J): I starts where J starts and ends strictly before J ends.
6. equal (7, J): intervals I and J are the same.

together with the symmetric versions, for example met-by(7, J) •(-)• meet(J, I).
Since all the possible relations between two closed intervals are enumerated by this

base set of relations it is directly closed under negation. The negation of a temporal
relation Ri is the disjunction of the other relations V, Ri- The temporal reasoner uses a
7 by 7 table to compute the transitive closure of relations. For example, if bef ore(7, J)
holds and join(J,Ä"), then before(/, if). On the other hand, if meets(/,J) and
meets(J,K), then either meets(I,K) or before(/,K). The table summarizing all
Allen temporal relationships is summarized in [3]. However, it contains a typo, a
disjunction in one of the table entries is missing, so to avoid repeating the same typo
and introducing new we synthesized the table using decision procedures for rational
numbers. For this purpose we translated the Allen temporal primitives to arithmetical
relations using the schema:

bef ore(J, J) = End(7) (Start(J)
meets (I, J) = End(/) = Start (J)
starts (I, J) = Start (I) = Start (J)&End(/)(End(J)

Then, for 7, J, K we formed all triples of the form

Ri{I,J) A Rj(J,K) A Rk{I,K)

for temporal relations Ri,Rj,Rk, and included Rk in the Ri,Rj entry if and only if
the arithmetical predicate was satisfiable (the fact that we used a decision procedure
for rational arithmetic was not exploited fully, as the decision problems only required
reasoning about a linear order).

Using this approach we generated the relevant table for the Allen temporal rea-
soner and delivered it to Cycorp.

15

2.5.1. Table generation with Specware In this paragraph we outline how the
table was generated using Specware's user syntax.

spec IntervalRelations =

sort interval

op Start : interval -> Nat

op End : interval -> Nat

axiom fa(i:interval) (Start(i) <= End(i))

def Before(I,J) = End(I) < Start(J)

def After(I.J) = Before(J,I)

def During(I,J) =

Start(J) < Start(I) ft End(I) < End(J)

def Contains(I,J) = During(y.I)

def Overlaps(I,J) =

Start(I) < Start(J) ft

Start(J) < End(I) &

End(I) < End(J)

def OverlappedBy(I,J) = Overlaps(y,I)

def Meets(I,J) = End(I) = Start(J)

def MetBy(I,J) = Meets(y,I)
def Starts(I,J) =

Start(I) = Start(J) & End(I) < End(J)

def StartedBy(I,J) =

Starts(y,I)

def Finishes(I,J) =

End(I) = End(J) & Start(J) < Start(I)

def FinishedBy(I.J) = Finishes(J,I)

conjecture *tr-lt*-l is

not(trStart(a,b) & trStart(b.c) ft trStart(a.c))

conjecture *tr-fc*-49 is

not(trFinshedBy(a,b) & trFinishedBy(b.c) ft trFinishedBy(a.c))
end-spec

Curiously, we later found that the above mentioned bug in the article had pen-
etrated to other implementations of the Allen temporal reasoner, which ended up
giving undesired behaviour of the underlying theorem prover.

3. Designware

This section presents a mechanizable framework for software development by refine-
ment. The framework is based on a category of higher-order specifications. The key
idea is representing knowledge about programming concepts, such as algorithm de-
sign, datatype refinement, and expression simplification, by means of taxonomies of
specifications and morphisms.

16

The framework is partially implemented in the research systems Specware, De-
signware, and Planware. Specware provides basic support for composing specifications
and refinements via colimit, and for generating code via logic morphisms. Specware is
intended to be general-purpose and has found use in industrial settings. Designware
extends Specware with taxonomies of software design theories and support for con-
structing refinements from them. Planware builds on Designware to provide highly
automated support for requirements acquisition and synthesis of high-performance
scheduling algorithms.

3.1. Overview

A software system can be viewed as a composition of information from a variety of
sources, including

- the application domain,
- the requirements on the system's behavior,
- software design knowledge about system architectures, algorithms, data structures,

code optimization techniques, and
- the run-time hardware/software/physical environment in which the software will

execute.

This section presents a mechanizable framework for representing these various sources
of information, and for composing them in the context of a refinement process. The
framework is founded on a category of specifications. Morphisms are used to structure
and parameterize specifications, and to refine them. Colimits are used to compose
specifications. Diagrams are used to express the structure of large specifications, the
refinement of specifications to code, and the application of design knowledge to a
specification.

The framework features a collection of techniques for constructing refinements
based on formal representations of programming knowledge. Abstract algorithmic
concepts, datatype refinements, program optimization rules, software architectures,
abstract user interfaces, and so on, are represented as diagrams of specifications and
morphisms. We arrange these diagrams into taxonomies, which allow incremental
access to and construction of refinements for particular requirement specifications.
For example, a user may specify a scheduling problem and select a theory of global
search algorithms from an algorithm library. The global search theory is used to
construct a refinement of the scheduling problem specification into a specification
containing a global search algorithm for the particular scheduling problem.

The framework is partially implemented in the research systems Specware, De-
signware, and Planware. Specware provides basic support for composing specifications
and refinements, and generating code. Code generation in Specware is supported by

17

inter-logic morphisms that translate between the specification language/logic and the
logic of a particular programming language (e.g. CommonLisp or C++). Specware
is intended to be general-purpose and has found use in industrial settings. Design-
ware extends Specware with taxonomies of software design theories and support for
constructing refinements from them. Planware provides highly automated support for
requirements acquisition and synthesis of high-performance scheduling algorithms.

The remainder of this section covers basic concepts and the key ideas of our ap-
proach to software development by refinement, in particular the concept of design
by classification [26]. We also discuss the application of these techniques to domain-
specific refinement in Planware [5]. A detailed presentation of a derivation in Design-
ware is given in [27].

3.2. Basic Concepts

3.2.1. Specifications A specification is the finite presentation of a theory. The
signature of a specification provides the vocabulary for describing objects, operations,
and properties in some domain of interest, and the axioms constrain the meaning of
the symbols. The theory of the domain is the closure of the axioms under the rules
of inference.

Example: Here is a specification for partial orders, using notation adapted from
Specware. It introduces a sort E and an infix binary predicate on E, called le, which
is constrained by the usual axioms. Although Specware allows higher-order specifica-
tions, first-order formulations are sufficient for most purposes.

spec Partial-Order is
sort E
op Je_ : E,E -» Boolean
axiom reflexivity is x le x
axiom transitivity is x le y A y le z => x le z
axiom antisymmetry is x le y A y le x =>• x = z

end-spec

Example: Containers are constructed by a binary join operator and they represent
finite collections of elements of some sort E. The specification shown in Figure 1
includes a definition by means of axioms. Operators are required to be total. The
constructor clause asserts that the operators {empty, singleton, join} construct the
sort Container, providing the basis for induction on Container.

The generic term expression will be used to refer to a term, formula, or sentence.
A model of a specification is a structure of sets and total functions that satisfy the

axioms. However, for software development purposes we have a less well-defined notion
of semantics in mind: each specification denotes a set of possible implementations in

18

spec Container is
sorts E, Container
op empty :—»• Container
op singleton : E —> Container
op .join. : Container, Container —>■ Container
constructors {empty, singleton, join} construct Container

axiom V(x : Container)(x join empty = x A empty join x = x)
op An- : E, Container —> Boolean
definition of in is

axiom a; in empty = false
axiom x in singleton(y) = (x = y)
axiom x in U join V = (x in U V x in V)

end-definition
end-spec

Fig. 1. Specification for Containers

some computational model. Currently we regard these as functional programs. A
denotational semantics maps these into classical models.

3.2.2. Morphisms A specification morphism translates the language of one spec-
ification into the language of another specification, preserving the property of prov-
ability, so that any theorem in the source specification remains a theorem under
translation.

A specification morphism m : T —> T' is given by a map from the sort and
operator symbols of the domain spec T to the symbols of the codomain spec T". To
be a specification morphism it is also required that every axiom of T translates to a
theorem of T". It then follows that a specification morphism translates theorems of
the domain specification to theorems of the codomain.

Example: A specification morphism from Partial- Order to Integer is:

morphism Partial-Order-to-Integer is
{E H-> Integer, le H* <}

Translation of an expression by a morphism is by straightforward application of the
symbol map, so, for example, the Partial-Order axiom x le x translates to a; < x.
The three axioms of a partial order remain provable in Integer theory after translation.

Morphisms come in a variety of flavors; here we only use two. An extension or
import is an inclusion between specs.

Example: We can build up the theory of partial orders by importing the theory of
preorders. The import morphism is {E \-t E, le M- le}.

spec PreOrder

19

sort E
op Je_ : E,E —> Boolean
axiom reflexivity is x le x
axiom transitivity is x le y A y le z =>■ x le z

end-spec

spec Partial-Order
import PreOrder
axiom antisymmetry is x ley A y le x => x = z

end-spec

A definitional extension, written A —d-^B , is an import morphism in which any
new symbol in B also has an axiom that defines it. Definitions have implicit axioms
for existence and uniqueness. Semantically, a definitional extension has the property
that each model of the domain has a unique expansion to a model of the codomain.

Example: Container can be formulated as a definitional extension of
P re-Container:

spec Pre-Container is
sorts E, Container
op empty : —> Container

, op singleton : E —>■ Container
op -join^ : Container, Container —> Container
constructors {empty, singleton, join} construct Container
axiom V(x : Container) (x join empty = x A empty join x = x)

end-spec

spec Container is
imports Pre-Container
definition of in is

axiom x in empty = false
axiom x in singleton(y) = (x = y)
axiom x inU join V = (x inU V x in V)

end-definition
end-spec

A parameterized specification can be treated syntactically as a morphism.
Example: The specification Container can be parameterized on a spec Triv with

a single sort:

spec Triv is
sort E

end-spec

20

via

parameterized-spec Parameterized-Container : TRIV ->■ Container is
{E i-» E}

A functorial semantics for first-order parameterized specifications via coherent
functors is given in section 4..

3.2.3. The Category of Specs Specification morphisms compose in a straight-
forward way as the composition of finite maps. It is easily checked that specifications
and specification morphisms form a category SPEC. Colimits exist in SPEC and are

easily computed. Suppose that we want to compute the colimit of B^1— A —>C .
First, form the disjoint union of all sort and operator symbols of A, B, and C, then
define an equivalence relation on those symbols:

s fat iff (i(s) = t V i(t) = s V j(s) = t V j(t) = s).

The signature of the colimit (also known as pushout in this case) is the collection of
equivalence classes wrt «. The cocone morphisms take each symbol into its equiva-
lence class. The axioms of the colimit are obtained by translating and collecting each
axiom of A, B, and C.

Example: Suppose that we want to build up the theory of partial orders by com-
posing simpler theories.

spec BinRel is
sort E
op Je_ : E,E —>• Boolean
end-spec

spec Antisymmetry is
import BinRel
axiom antisymmetry is

x ley A ylex => x = z
end-spec

spec PreOrder is
import BinRel
axiom reflexivity is x le x
axiom transitivity is

x le y A y le z =>• x le z
end-spec

The pushout of Antisymmetry <- BinRel -> PreOrder is isomorphic to the
specification for Partial-Order in Section 2.1. In detail: the morphisms are {E i->
E, le i-> le} from BinRel to both PreOrder and Antisymmetry. The equivalence
classes are then {{E,E,E}, {le,le,le}}, so the colimit spec has one sort (which

21

we rename E), and one operator (which we rename le). Furthermore, the axioms of
BinRel, Antisymmetry, and PreOrder are each translated to become the axioms of
the colimit. Thus we have Partial-Order.

Example: The pushout operation is also used to instantiate the parameter in a
parameterized specification [6]. The binding of argument to parameter is represented
by a morphism. To form a specification for Containers of integers, we compute the
pushout of Container <- Triv ->■ Integer, where Container <- Triv is {E (->■ E},
and Triv -> Integer is {E H-> Integer}.

Example: A specification for sequences can be built up from Container, also via
pushouts. We can regard Container as parameterized on a binary operator

spec BinOp is
sort E
op -bop. : E,E ->■ E

end-spec

morphism Container-Parameterization : BinOp ->• Container is
{E !->■ E, bop (->■ join}

and we can define a refinement arrow that extends a binary operator to a semigroup:

spec Associativity is
"import BinOp
axiom Associativity is ((x join y) jom z) = (x join (y join z))

end-spec

The pushout of Associativity -f- BinOp ->■ Container, produces a collection speci-
fication with an associative join operator, which is Proto-Seq, the core of a sequence
theory (See Appendix in [27]). By further extending Proto-Seq with a commutativity
axiom, we obtain Proto-Bag theory, the core of a bag (multiset) theory.

3.2.4. Diagrams Roughly, a diagram is a graph morphism to a category, usually
the category of specifications in our work. For example, the pushout described above
started with a diagram comprised of two arrows:

BinRel >■ PreOrder

Antisymmetry

22

and computing the pushout of that diagram produces another diagram:

BinRel > PreOrder

Antisymmetry > Partial-Order

A diagram commutes if the composition of arrows along two paths with the same
start and finish node yields equal arrows.

3.2.5. The Structuring of Specifications Colimits can be used to construct a
large specification from a diagram of specs and morphisms. The morphisms express
various relationships between specifications, including sharing of structure, inclusion
of structure, and parametric structure. Several examples will appear later.

Example: The finest-grain way to compose Partial-Order is via the colimit of

BinRel

Reflexivity Transitivity Antisymmetry

3.2.6. Refinement and Diagrams As described above, specification morphisms
can be used to help structure a specification, but they can also be used to refine
a specification. When a morphism is used as a refinement, the intended effect is to
reduce the number of possible implementations when passing from the domain spec
to the codomain. In this sense, a refinement can be viewed as embodying a particular
design decision or property that corresponds to the subset of possible implementations
of the domain spec which are also possible implementations of the codomain.

Often in software refinement we want to preserve and extend the structure of a
structured specification (versus flattening it out via colimit). When a specification is
structured as a diagram, then the corresponding notion of structured refinement is a
diagram morphism. A diagram morphism M from diagram D to diagram E consists
of a set of specification morphisms, one from each node/spec in D to a node in E
such that certain squares commute (a functor underlies each diagram and a natural
transformation underlies each diagram morphism). We use the notation D =» E
for diagram morphisms.

Example: A datatype refinement that refines bags to sequences can be presented
as the diagram morphism BtoS : BAG => BAG-AS-SEQ:

Bag Triv

BtoSjBag BtoSTri

Seq *- Bag-as-Seq ■< Triv

BAG

BtoS

BAG-AS-SEQ

23

where the domain and codomain of BtoS are shown in boxes, and the (one) square
commutes. Here Bag-as-Seq is a definitional extension of Seq that provides an image
for Bag theory. Specs for Bag, Seq and Bag-as-Seq and details of the refinement can
be found in Appendix A of [27]. The interesting content is in spec morphism BtoSBag-

morphism BtoSBag ■ Bag ->■ Bag-as-Seq is
{Bag !->■ Bag-as-Seq,
empty-bag H-> bag-empty,
empty-bag? !->• bag-empty?,
nonempty? l-> bag-nonempty?,
singleton-bag M- bag-singleton,
singleton-bag? y~> bag-singleton?,
nonsingleton-bag? !->• bag-nonsingleton?,
in H-» bag-in,
bag-union I-)- bag-union,
bag-wfgt I-)- bag-wfgt,
size !->• bag-size}

Diagram morphisms compose in a straightforward way based on spec morphism
composition. It is easily checked that diagrams and diagram morphisms form a cate-
gory. Colimits in this category can be computed using left Kan extensions and colimits
in SPEC. In the sequel we will generally use the term refinement to mean a diagram
morphism.

3.2.7. Logic Morphisms and Code Generation Inter-logic morphisms [24] are
used to translate specifications from the specification logic to the logic of a program-
ming language. See [28] for more details. They are also useful for translating between
the specification logic and the logic supported by various theorem-provers and anal-
ysis tools. They are also useful for translating between the theory libraries of various
systems.

24

3.3. Software Development by Refinement

So

Si

s2

"n

Code

The development of correct-by-construction code via a for-
mal refinement process is shown to the left. The refinement
process starts with a specification So of the requirements
on a desired software artifact. Each Si, i = 0,1, ...,n rep-
resents a structured specification (diagram) and the arrows
-II are refinements (represented as diagram morphisms). The
refinement from S{ to Si+i embodies a design decision which
cuts down the number of possible implementations. Finally an
inter-logic morphism translates a low-level specification Sn to
code in a programming language. Semantically the effect is to
narrow down the set of possible implementations of Sn to just
one, so specification refinement can be viewed as a construc-
tive process for proving the existence of an implementation
of specification So (and proving its consistency).

Clearly, two key issues in supporting software development by refinement are: (1)
how to construct specifications, and (2) how to construct refinements. Most of the
sequel treats mechanizable techniques for constructing refinements.

3.3.1. Constructing Specifications A specification-based development environ-
ment supplies tools for creating new specifications and morphisms, for structuring
specs into diagrams, and for composing specifications via importation, parameteriza-
tion, and colimit. In addition, a software development environment needs to support
a large library of reusable specifications, typically including specs for (1) common
datatypes, such as integer, sequences, finite sets, etc. and (2) common mathematical
structures, such as partial orders, monoids, vector spaces, etc. In addition to these
generic operations and libraries, the system may support specialized construction
tools and libraries of domain-specific theories, such as resource theories, or generic
theories about domains such as satellite control or transportation.

3.3.2. Constructing Refinements A refinement-based development environment
supplies tools for creating new refinements. One of our innovations is showing how
a library of abstract refinements can be applied to produce refinements for a given
specification. In this section, we focus mainly on refinements that embody design
knowledge about (1) algorithm design, (2) datatype refinement, and (3) expression op-
timization. We believe that other types of design knowledge can be similarly expressed

25

and exploited, including interface design, software architectures, domain-specific re-
quirements capture, and others. In addition to these generic operations and libraries,
the system may support specialized construction tools and libraries of domain-specific
refinements.

The key concept of this work is the following: abstract design knowledge about
datatype refinement, algorithm design, software architectures, program optimization
rules, visualization displays, and so on, can be expressed as refinements (i.e. diagram
morphisms). The domain of one such refinement represents the abstract structure that
is required in a user's specification in order to apply the embodied design knowledge.
The refinement itself embodies a design constraint - the effect is a reduction in the set
of possible implementations. The codomain of the refinement contains new structures
and definitions that are composed with the user's requirement specification.

The figure to the left shows the application of a library re-
finement A =>- B to a given (structured) specification So.
First the library refinement is selected. The applicability of the
refinement to So is shown by constructing a classification ar-
row from A to S0 which classifies S0 as having A-structure by
making explicit how S0 has at least the structure of A. Finally
the refinement is applied by computing the pushout in the ca-
tegory of diagrams. The creative work lies in constructing the
classification arrow [25,26].

3.4. Scaling up

The process of refining specification S0 described above has three basic steps:

1. select a refinement A =>• B from a library,
2. construct a classification arrow A =$ S0, and
3. compute the pushout Si of B <= A => S0.

The resulting refinement is the cocone arrow SQ =>■ Si. This basic refinement process
is repeated until the relevant sorts and operators of the spec have sufficiently explicit
definitions that they can be easily translated to a programming language, and then
compiled.

In this section we address the issue of how this basic process can be further
developed in order to scale up as the size and complexity of the library of specs and
refinements grows. The first key idea is to organize libraries of specs and refinements
into taxonomies. The second key idea is to support tactics at two levels: theory-specific
tactics for constructing classification arrows, and task-specific tactics that compose
common sequences of the basic refinement process into a larger refinement step.

26

3.4.1. Design by Classification: Taxonomies of Refinements A productive
software development environment will have a large library of reusable refinements,
letting the user (or a tactic) select refinements and decide where to apply them. The
need arises for a way to organize such a library, to support access, and to support
efficient construction of classification arrows. A library of refinements can be organized
into taxonomies where refinements are indexed on the nodes of the taxonomies, and
the nodes include the domains of various refinements in the library. The taxonomic
links are refinements, indicating how one refinement applies in a stronger setting than
another.

Container

Proto-Seq

Proto-Bag Seq

"
Bag Proto-Set

Fig. 2. Taxonomy of Container Datatypes

Figure 2 sketches a taxonomy of abstract datatypes for collections. The arrows
between nodes express the refinement relationship; e.g. the morphism from Proto-Seq
to Proto-Bag is an extension with the axiom of commutativity applied to the join
constructor of Proto-Seqs. Datatype refinements are indexed by the specifications in
the taxonomy; e.g. a refinement from (finite) bags to (finite) sequences is indexed at
the node specifying (finite) bag theory.

The paper [27] gives a taxonomy of algorithm design theories. The refinements
indexed at each node correspond to (families of) program schemes. The algorithm
theory associated with a scheme is sufficient to prove the consistency of any instance
of the scheme. Nodes that are deeper in a taxonomy correspond to specifications
that have more structure than those at shallower levels. Generally, we wish to select
refinements that are indexed as deeply in the taxonomy as possible, since the maximal
amount of structure in the requirement specification will be exploited. In the algorithm
taxonomy, the deeper the node, the more structure that can be exploited in the
problem, and the more problem-solving power that can be brought to bear. Roughly

27

K

speaking, narrowly scoped but faster algorithms are deeper in the taxonomy, whereas
widely applicable general algorithms are at shallower nodes.

Two problems arise in using a library of refinements: (1) selecting an appropri-
ate refinement, and (2) constructing a classification arrow. If we organize a library
of refinements into a taxonomy, then the following ladder construction process pro-
vides incremental access to applicable refinements, and simultaneously, incremental
construction of classification arrows.

The process of incrementally constructing a refinement
is illustrated in the ladder construction diagram to the

^> Speco left. The left side of the ladder is a path in a taxon-
omy starting at the root. The ladder is constructed a
rung at a time from the top down. The initial interpre-
tation from Ao to Speco is often simple to construct.
The rungs of the ladder are constructed by a constraint
solving process that involves user choices, the propa-
gation of consistency constraints, calculation of colim-
its, and constructive theorem proving [25,26]. Gener-
ally, the rung construction is stronger than a colimit
- even though a cocone is being constructed. The in-
tent in contructing I{ : A{ =>SpeCi is that Speci has

A,

h> Speci

h> Spec2

In. > Specn sufficient defined symbols to serve as the codomain. In
other words, the implicitly defined symbols in Ai are
translated to explicitly defined symbols in Speci.

Once we have constructed a classification arrow A„ =>•

An
In. Specn

Specn and selected a refinement An Bn that is

Br, => Spec 71+1

indexed at node An in the taxonomy, then constructing
a refinement of Spec0 is straightforward: compute the
pushout, yielding Specn+i, then compose arrows down
the right side of the ladder and the pushout square to
obtain Spec0 => Specn+i as the final constructed
refinement.

Again, rung construction is not simply a matter of computing a colimit. For ex-
ample, there are at least two distinct arrows from Divide-and-Conquer to Sorting,
corresponding to a mergesort and a quicksort - these are distinct cocones and there
is no universal sorting algorithm corresponding to the colimit. However, applying the
refinement that we select at a node in the taxonomy is a simple matter of computing
the pushout. For algorithm design the pushout simply instantiates some definition
schemes and other axiom schemes.

28

It is unlikely that a general automated method exists for constructing rungs of
the ladder, since it is here that creative decisions can be made. For general-purpose
design it seems that users must be involved in guiding the rung construction process.
However in domain-specific settings and under certain conditions it will possible to
automate rung construction (as discussed in the next section). Our goal in Designware
is to build an interface providing the user with various general automated operations
and libraries of standard components. The user applies various operators with the
goal of filling out partial morphisms and specifications until the rung is complete.
After each user-directed operation, constraint propagation rules are automatically
invoked to perform sound extensions to the partial morphisms and specifications
in the rung diagram. Constructive theorem-proving provides the basis for several
important techniques for constructing classification arrows [25,26].

3.4.2. Tactics The design process described so far uses primitive operations such
as (1) selecting a spec or refinement from a library, (2) computing the pushout/colimit
of (a diagram of) diagram morphisms, and (3) unskolemizing and translating a for-
mula along a morphism, (4) witness-finding to derive symbol translations during the
construction of classification arrows, and so on. These and other operations can be
made accessible through a GUI, but inevitably, users will notice certain patterns of
such operations arising, and will wish to have macros or parameterized procedures
for them, which we call tactics. They provide higher level (semiautomatic) operations
for the user.

The need for at least two kinds of tactics can be discerned.

1. Classification tactics control operations for constructing classification arrows. The
divide-and-conquer theory admits at least two common tactics for constructing
a classification arrow. One tactic can be procedurally described as follows: (1)
the user selects a operator symbol with a DRO requirement spec, (2) the system
analyzes the spec to obtain the translations of the DRO symbols, (3) the user is
prompted to supply a standard set of constructors on the input domain D, (4) the
tactic performs unskolemization on the composition relation in each Soundness
axiom to derive a translations for Oa, and so on. This tactic was followed in the
mergesort derivation.
The other tactic is similar except that the tactic selects constructors for the com-
position relations on R (versus D) in step (3), and then uses unskolemization
to solve for decomposition relations in step (4). This tactic was followed in the
quicksort derivation.
A classification tactic for context-dependent simplification provides another exam-
ple. Procedurally: (1) user selects an expression expr to simplify, (2) type analysis
is used to infer translations for the input and output sorts of expr, (3) a context

29

analysis routine is called to obtain contextual properties of expr (yielding the
translation for C), (4) unskolemization and witness-finding are used to derive a
translation for new-expr.

2. Refinement tactics control the application of a collection of refinements; they may
compose a common sequence of refinements into a larger refinement step. Plan-
ware has a code-generation tactic for automatically applying spec-to-code inter-
logic morphisms. Another example is a refinement tactic for context-dependent
simplification; procedurally, (1) use the classification tactic to construct the classi-
fication arrow, (2) compute the pushout, (3) apply a substitution operation on the
spec to replace expr with its simplified form and to create an isomorphism. Finite
Differencing requires a more complex tactic that applies the tactic for context-
dependent simplification repeatedly in order to make incremental the expressions
set up by applying the Expr es sion-and-F unction -> Abstracted-Op refinement.

We can also envision the possibility of metatactics that can construct tactics for
a given class of tasks. For example, given an algorithm theory, there may be ways
to analyze the sorts, ops and axioms to determine various orders in constructing the
translations of classification arrows. The two tactics for divide-and-conquer mentioned
above are an example.

3.5. Summary

The main message of this section is that a formal software refinement process can be
supported by automated tools, and in particular that libraries of design knowledge
can be brought to bear in constructing refinements for a given requirement specifica-
tion. One goal of this section has been to show that diagram morphisms are adequate
to capture design knowledge about algorithms, data structures, and expression opti-
mization techniques, as well as the refinement process itself. We showed how to apply
a library refinement to a requirement specification by constructing a classification
arrow and computing the pushout. We discussed how a library of refinements can
be organized into taxonomies and presented techniques for constructing classification
arrows incrementally. The examples and most concepts described are working in the
Specware, Designware, and Planware systems.
Acknowledgements: The work reported here is the result of extended collaboration
with our colleagues at Kestrel Institute. We would particularly like to acknowledge the
contributions of Li Mei Gilham, Junbo Liu, Dusko Pavlovic, and Stephen Westfold.

4. Parametrized specifications

Parametricity is one of the most effective ways to achieve compositionality and reuse
in software development. Parametric specifications have been thoroughly analyzed in

30

the algebraic setting and are by now a standard part of most software development
toolkits. However, an effort towards classifying, specifying and refining algorithmic
theories, rather than mere datatypes, quickly leads beyond the realm of algebra, and
often to full first order theories. We extend the standard semantics of parametric
specifications to this more general setting.

The familiar semantic characterization of parametricity in the algebraic case is
expressed in terms of the free functor, i.e. using the initial models. In the general
case, initial models may not exist, and the free functor is not available. Various
syntactic, semantic, and abstract definitions of parametricity have been offered, but
their exact relationships are often unclear. Using the methods of categorical model
theory, we establish the equivalence of two well known, yet so far unrelated, definitions
of parametricity, one syntactic, one semantic. Besides providing support for both
underlying views, and a way for aligning the systems based on each of them, the
offered general analysis and its formalism open several avenues for future research
and applications.

4.1. Introduction

4.1.1. Parametric specifications The idea of parametric polymorphism goes back
to Strachey [30] and refers to code reusable over any type that may be passed to it
as a parameter. If a type is viewed as a set of logical invariants of the data, this
idea naturally extends to the software specifications, as the logical theories capturing
requirements and allowing their refinement. The idea of parametric specifications was
proposed early on and became a standard part of specification theory (cf. e.g. [9,12,
13] and the references therein).

A standard nontrivial example of a parametric specification is a presentation of
the theory of vector spaces, with the theory of fields as its parameter. The idea is
that refining the parameter, in this case the subtheory referring to scalars, yields a
consistent refinement of the larger theory, usually called the body. Formally, we are
given a theory VecSp and a distinguished subtheory Field <-» VecSp. The refinement
is realized by the pushout in the category of specifications [6,14].

Fieldc > VecSp[Field]

Real0 »- VecSp[Real]

The functoriality of the pushout operation ensures the compositionality of the refine-
ments.

31

Of course, not every interpretation of one specification in another allows this. For
instance, if instead of Field, just the theory of rings is taken as the parameter of VecSp,
some consistent refinements of the parameter will induce inconsistencies in the body.
Some models of the parameter therefore do not correspond to models of the body.

Some syntactic parametricity conditions, ensuring that consistent refinements of
the parameter induce consistent refinements of the body, were proposed early on
[11,15]. However, the analogous semantic characterizations, ensuring that models of
the parameter induce models of the body, were given only in terms of free functors,
which only exist for (essentially) algebraic specifications, i.e. those stated using just
operations and equations (and simple implications between them). In [11], cofree
functors were analyzed as well, but for a general first order theory, they may not exist
either. E.g., the theories of fields, Hilbert spaces, or linear orders do not have either
intial or final models.

Algebraic specifications do suffice for great many practical tasks and offer a fruit-
ful ground for theory [9]. However, when it comes to systems for code synthesis, like
SPECWARE™ [17], where it is essential to compositionally refine and implement not
only abstract datatypes, but also abstract algorithmic theories, algebraic specifica-
tions become increasingly insufficient, and initial and final semantics do not apply.

On one hand, a syntactic form of parametricity for general specifications has been
used in practice and in the literature [12,13]. On the other hand, in [8], a semantical
definition of parametricity was proposed, independent of the existence of initial or
final models. However, it seems that neither the semantic characterization of the for-
mer nor the syntactic characterization of the latter have been worked out. Abstracting
away from the concrete meaning of parametricity, some interesting structures have
been built, applicable to parametric specifications in general [7,29], yet no statement
tieing together the syntactic and the semantic intuitions seems to have been proved.
The purpose of the present paper is to try to bridge this gap, while providing some ev-
idence of the applicability of categorical model theory to the study of general software
specifications.1

4.1.2. Elements of categorical model theory The functorial semantics of alge-
braic theories goes back to the sixties, to Lawvere's thesis [19]. The theory of categor-
ical universal algebra which arose from it is summarized in [23]. An important step
beyond algebra is the study of locally presentable categories [10], which come about
as the model categories of limit theories, a wider, yet essentially restricted class. The
full scope of first order logic was covered by categorical model theory rather slowly,

1 In contrast, the purported algebraicizing of general specifications in higher order logic by presenting the
first order theorems as higher order equations only shifts the problems from the large but familiar area of
first order model theory to the scarcely cultivated field of higher order algebra.

32

throughout the seventies and eighties, as some parts tend to be technically rather
demanding. Good accounts of the more accessible parts are [2,21,22].

The main idea of functorial semantics is to

- present logical theories as classifying categories with structure, so as to
- obtain their models as structure preserving functors to Set, with homomorphisms

between them as natural transformations.

The resulting categories of models will always be accessible, i.e. have directed colimits
and a suitable generating set. Conversely, every accessible category can be obtained
as the category of models of a first order theory, possibly infinitary. Categorical model
theory is thus the study of accessible categories and the way they arise from theories.
There is a very general Stone-type duality between the first order theories, presented
as categories, and the induced categories of models [20], but it is quite involved in
technical details, and it is not clear whether it can be brought into a practically useful
form.

But without going into the formal duality, one can still systematically explore the
relationships between the syntactic and the semantic aspects of theories, by analyzing
functors between their categorical presentations. In particular, for any two first order
theories A and B, presented as classifying categories, one can align the properties
of the logical interpretations, which can be captured as functors F : A —> B, and
the induced forgetful, or "reduct", functors F* : Mod(B) —> Mod(A) between the
corresponding categories of models.

This is a typical task for semantics of software specifications: analyze how a par-
ticular class of syntactical manipulations with theories is reflected on their models,
and on the computations that may be built on top. We shall show that a syntactic
definition of parametric specification, viewed as a property of the interpretation func-
tor F : A —> B, is equivalent to an independent semantic definition, stated in terms
of the "reduct" functor F* : Mod(B) —»Mod (A).

4.1.3. Outline of the paper In the next section, we describe the concrete con-
structions of classifying categories, explain how interpretations are captured as func-
tors between them, and how the idea of parametricity fits into this setting.

In section 4.3. we list some abstract preliminary results that align the syntactic
and semantic properties of functors.

Finally, in section 4.4., we derive the main result: the equivalence of a syntactic
form of parametricity, in the spirit of [12,13], and a semantic form, as in [8], both
adapted only to a common categorical setting.

33

4.2. Theories and models, categorically

4.2.1. Classifying categories The simplest classifying category is the Lawvere
clone C7- of an algebraic theory T, say single sorted. Its objects can be viewed as
natural numbers (viz the arities), while a morphism from m to n is an n-tuple of
the elements of the free algebra in m generators, i.e. a function n —> Tm, where
T denotes the free algebra constructor.2 A crucial observation from Lawvere's thesis
[19] is that C7- classifies T-algebras, in the sense that they exactly correspond to the
product preserving functors C7- —)■ Set, while the T-homomorphisms correspond
to the natural transformations between them. Indeed, since n in C7- appears as the
product of n copies of 1, the product preservation ensures that the functors C7 > Set
trace the operations with the correct arities. The equations of T are then enforced
by the functoriality. Detailed explanations of the functorial semantics of algebraic
theories can be found e.g. in [23].

If models of more general theories are to be captured as functors, some additional
preservation properties will be needed, in order to enforce satisfaction of not necessar-
ily equational formulas, that may express more than mere commutativity conditions.
There are several well known frameworks for building suitable classifying categories
and developing functorial semantics for general first order theories, the most "cat-
egorical" being probably sketches [4,21]. We shall however work in the setting of
coherent categories [22], closest to the original geometric spirit of categorical logic,
because they seem to allow the quickest and perhaps the most intuitive approach to
the matters presently of interest.

4.2.2. Coherent categories Let T be a multisorted first order theory with equal-
ity. For simplicity, we assume that it is purely relational: operations are captured by
their graphs. Moreover, T is assumed to be generated by a set of axioms in coherent
logic, i.e. using unitary A and V, including the empty ones, T and -L, and the quan-
tifier 3. The underlying logic can be classical or intuitionistic. We cannot go into the
details here, but reducing finitary first order logic to its coherent fragment is a fairly
standard technical device (see [2,1,22] and especially the informative introduction of
[21]). The extension to infinitary logic is justified by stable and natural categories of
models and is routinely handled by extending the classifying constructions. However,
some of the proofs presented below essentially depend on the finiteness assumption.

Formally, the theory T can be viewed as a preorder: the underlying set \T\ of
well-formed formulas is generated by its language, while the entailment preorder h is
generated by its axioms. The rough idea is to capture the well-formed formulas of T
2 So if T is presented by the monad T, the classifier Cr is the dual of the induced Kleisli category, restricted

to natural numbers.

34

as the objects of the classifying category C7-, and the theorems of T as the morphisms
ofCr.

The passage from the formulas of T to the objects of Cr requires an adjustment:
the formulas must be viewed modulo variable renaming, i.e. «-conversion 4>(x) ~ 4>(y),
where x and y are vectors of variables. Note that this is not a congruence with respect
to the logical operations, because e.g. <f>(x) A (f)(y) ^ <f){x) A (f>(x).

The passage from theorems of T to morphisms of C7- requires a similar adjustment:
modulo the logical equivalence (p -\\- ip, which means that (p \- ip and ip h (p. The
definition is thus

|Cr| = |T|/~
Cr (a(x), ß(y)) = {d(x, y)eT\ ti{x, y) h a(x) A ß(y),

a(x) h 3y. d(x,y),
ti(x,y')A'd(x,y")\-y' = y"}/-\\-

where x and y are disjoint strings of variables, always available by renaming3, and
= is the equality predicate in T. The identities in C7- are induced by the equality
predicates, and the composition of d(x, y) and g(y,z) is 3y. ß(x,y) A g(y,z).

The logical structure of T induces the categorical structure of C7-:

- finite limits are constructed using the conjunction and the variable tupling, start-
ing from the true predicates T(x) over each sort;

- regular epi-mono factorisations are constructed using the existential quantifier;
and finally

- joins of the subobjects correspond to the disjunctions.

These three structural components constitute a coherent category and are preserved
by coherent functors. Theories in coherent logic generate coherent classifying cate-
gories; conversely, each small coherent category classifies a coherent theory. Coherent
functors preserve the truth of the theorems in coherent logic. The reader may wish
to work out the details of this correspondence or to consult some of the mentioned
references.

A reader familiar with the functorial semantics of algebra has perhaps already
noticed that the coherent classifier of an algebraic theory contains the corresponding
Lawvere clone as a full subcategory, namely the one spanned by the true formulas
T(x), one for each arity x. Indeed, the coherent classifier of an algebraic theory is the
coherent completion of its Lawvere clone. The coherent classifiers have a richer set
of objects, in order to impose the preservation of more general axioms; but simpler
theories can be captured by smaller classifiers.
3 By abuse of notation, a(x), ß(y) and $(z,2/) denote their equivalence classes [a], [ß] and [#] modulo ~.

35

4.2.3. Interpretations and models The upshot of coherent classifying categories
is thus that the coherent functors, preserving the coherent structure, preserve the
coherent logic, and thus enforce the satisfaction of the coherent theorems, represented
as the morphisms in coherent categories. A coherent functor C7 > Cu can thus be
viewed as a sound interpretation of the theory T in the theory U. But since every
small coherent category A can be obtained as the classifier C7- of some coherent
theory T, every coherent functor F : A —> B can be understood logically, as such
an interpretation.

Although it is not small, Set has all the coherent structure, and the coherent
functors C7 > Set are exactly the models of T. The natural transformations are the
T-homomorphisms, preserving all the definable operations. For every small coherent
A, we shall denote by Mod (A) the category of coherent functors A —>■ Set. This is
the category of models of A. As pointed out before, categories of the form Mod(A) are
accessible, and by allowing infinite disjunctions, one could get (an equivalent version
of) every accessible category in this form [2, ch. 5].

On the other hand, by precomposition, every coherent functor F : A —> B induces
a "reduct" F* : Mod(B) —> Mod(A), reinterpreting a model N : B —> Set of B as
a model NF : A —> Set of A. This is the arrow part of the Mod-construction, which
yields an indexed category Mod : Cohop —> CAT, where Coh is the category of small
coherent categories and functors, and CAT is the metacategory of categories. Mod
thus assigns a semantics to each coherent theory T, classified by a coherent category
C7-; in other words, it maps each theory T to its category of models, captured as
coherent functors C7 > Set.

The semantical functor Mod is an instance of a specification frame in the sense
of Ehrig and Große-Rhode [8]. Specification frames are indexed categories, construed
as some abstract model category assignments, like Mod. In these terms, Ehrig and
Größe-Rhode proposed a semantical definition of parametric specifications, which will
be analyzed in the sequel.

4.2.4. Parametrized specifications as functors:
syntactic vs semantic definitions A reader unfamiliar with coherent logic may
wish to write down, as a quick exercise, say, the coherent theories of fields and vector
spaces and analyze their classifying categories. The classifying category Field is of
course a subcategory of the classifying category VecSp. The obvious functor Field M-
VecSp is full and faithful. This means that the theory of vector spaces is conservative
over the theory of fields: no new theorems about the scalars can be proved using the
vectors. Moreover, Field <—> VecSp is also a powerful functor: each subobject of an
object in the image is also in the image. This means that every predicate on scalars,
expressible in the theory of vector spaces, is already expressible in the theory of fields.

36

The embedding Field <-> VecSp is a typical parametric specification, defined syn-
tactically, as in [12,13]. Viewed in the setting of classifying categories, a parametric
specification is thus a coherent functor F : A —> B, which is full, faithful and pow-
erful.

On the semantic side, as already mentioned, Ehrig and Größe-Rhode [8] have
proposed an abstract definition of parametricity, applicable to the functor Mod :
Cohop —> CAT. Omitting the presentation details, a parametric specification is, ac-
cording to this definition, an interpretation F : A —> B, such that the induced func-
tor F* : Mod(B) —> Mod(A) is a retraction, i.e. there is a functor $: Mod(A) —>
Mod(B) with F#o<I> = Id. In words, $ maps each model M of the parameter A into a
model N = $M of the body B in such a way that the forgetful functor F# restores an
isomorphic copy4 of M. Such a functor $, which nondestructively expands a model,
is said to be persistent [9, sec. 10B].

In the present paper, we shall show that the above two definitions are roughly
equivalent: a coherent functor F : A —> B is full, faithful and powerful if and only if
F* : Mod(B) —> Mod(A) is a retraction, in the strong sense that every splitting of
its object part can be refined, by taking quotients, into a splitting functor.

Completeness view.

When an indexed family of sets {Bx\x G A} is represented as a function / :
B —> A, with Bx = f~l(x), an indexed element b G YlxeA^x becomes a splitting
4> '■ A —> B, f o <j) = id, with bx = (f)(x) G Bx.

Similarly, a specification B parametrized over A can be thought of as a family
of the instances of B indexed over the instances of A. In particular, the functor
F# : Mod(B) —> Mod(A) can be construed as a family of B-models indexed over
A-models. A splitting $: Mod(A) —> Mod(B), F*o$ ^ Id, then becomes an indexed
model of B, parametrized over A.

According to this view, a persistent functor is thus an indexed model. The para-
metricity of theories lifts to the parametricity of their models: the semantical definition
of parametric specification, described above, boils down to the requirement that there
is a parametric model of the body indexed over the models of the parameter.

The equivalence of the semantic and the syntactic definitions of parametricity,
which we are about to establish, thus becomes a soundness-and-completeness theorem,
in indexed form.
4 The original definition actually requires that M is recovered on the nose, i.e. that the strict equality

F* o$ = Id holds. But in abstract functorial calculus, this is almost never possible.

37

4.3. Syntactic vs semantic properties of functors

4.3.1. Preliminaries We begin by listing some useful terminology and facts from
the general functorial calculus.

Definition 1. A functor F : A —> B is said to be

embedding: if it is full and faithful;
subcovering: if for every object ßel there is a finite diagram D in B, such that

(1) B is the colimit of D, and (2) for every node D{ of D there is some A{ in A
and a monic Di >—> FAi in B;

subobject covering: if every B G B is a subobject of some FA, A G A (in other
words, if it is subcovering and the diagrams D can be chosen to have one node and
no edges);

powerful: if all subobjects5 of FA in B lie in the image of F. More precisely, for
d s

every monic D >—> FA in B there is a monic S >—► A in A and an isomorphism
i : D —t FS such that d = Fso i;

retraction: if it has a right inverse (i.e., there is G : B —-> A with FGM = M for
all M E A);

uniform retraction: if it is a retraction, and every splitting of its arrow part refines
to a right inverse (more precisely, if r : |A| —>■ |B| is such that FTM = M,
M € A then there is a functor G : A —V B, where GM is a quotient of FM and
FGM £ M);

(co)reflection: if it has a right inverse right (resp. left) adjoint.

Lemma 1. A powerful and subobject covering functor is essentially surjective.

Lemma 2. F : A —> B is faithful if and only if

F(<p) h Fty) =► ip h V (1)

As the converse of (1) is always true, a faithful coherent functor F always induces an
"order isomorphism" on the subobject lattices.

To prove lemma 2, use the fact that <p h ip if and only if (p = ip A ip.

Proposition 1. A coherent functor must be full as soon as it is both faithful and
powerful.
5 Recall that subobjects are isomorphism classes of monies.

38

Proof. Since F is powerful, the graph of any h: FA —► FA' must be in the essential
image of F: there must be a monic K >-> A x B in A the F-image of which is isomorphic
with the graph x = (id, h) : FA —> FAx FB. The relation FK thus satisfies;

5FA h FK ; F/sop

FKOP ; Fä h 5FB

which respectively tell that it is total and single valued. Taking into account that for
the identity relation 5 = (id, id) holds 8FX = F5X, and using (1), we conclude that «
is a total and single valued relation in A. In any regular category, such a relation must
be isomorphic to one in the form (id, k) : A —> AxB. Since clearly F(id, A;) = (id, h),
we conclude that Fk = h. 0

4.3.2. Basic results In the sequel, we assume that F : A —> B is a coherent
functor between coherent categories, and F# : Mod(B) —>■ Mod (A) is the functor
induced by the precomposition. We use and extend some results from [22]. Note
that some of them essentially depend on strong model theoretic assumptions, such
as compactness. The proofs are thus largely non-constructive, as they depend on the
axiom of choice.

Proposition 2. F is faithful if and only if F* is essentially surjective.

Proof. By lemma 2, F is faithful if and only if

Ftp h Fip 4=> <p \- ip

By the completeness theorem [22, thm. 5.1.7] Ftp h Fi/> holds if and only if

ViV e Mod(B). NFy C NFip

whereas ip\- ip holds if and only if

VM G Mod (A). M<p C Miß

The last two statements are clearly equivalent if F* is essentially surjective, i.e.

VM G Mod(A)3JV G Mod(B). M ^ F*N

Conversely, if there is M G Mod(A) different from F*N for all N G Mod(B), one can
use compactness to construct a formula ip such that NFij) is true for all models N of
B, whereas Miß is not. n

39

Definition 2. F# : Mod(B) —► Mod(A) is said to be subfull if every A-homomorphism

h : F*N' —> F*N" preserves all M-subobjects, i.e. for every monic D >—> FA
holds

in

hA(N'D) C N"D

N'D

N'd

N'FA-

N"D (2)

hA

N"d

■ N"FA

Proposition 3. F is powerful if and only if F* is subfull.

Proof. By definition, F is powerful if and only if every D >-> FA is in the essential
image of F, i.e. d = Fs for some S >-> A. So (2) must commute because it is isomorphic
with the square

N'FS-
hS

N'Fs

N'FA

N"FS

N"Fs

hA ■ N"FA

which commutes by the naturality of h.
The other way around, the fact that the subfullness of F#, i.e. the commutativity

of squares (2) implies that F is powerful is one of the main constituents of the Makkai-
Reyes conceptual completeness theorem [22, ch. 7§1]. The proof can be extracted from
[22, thms. 7.1.4-4'], and essentially depends on compactness. D

Proposition 4. F is subcovering if and only if F* is faithful.

Proof. Suppose F is subcovering and let F*g = F*h for some B-homomorphisms
g,h : N' —> N". The equation F*g = F*h means that gFA = hFA : N'FA —►
N"FA for all A e A.

I claim that then gB = hB : N'B —> N"B must hold for every ßel Since F
is subcovering, for each B there is a finite diagram D, with (1) a colimit cocone to B,

40

i.e. a jointly epimorphic family {Dj -4 JB}"=1, and (2) the inclusions {A v-4 FAi}^
for some objects Ai,... An 6 A. Hence

N'FAi gF^r > N"FAi

N'di

N'Di

N'bi

hFAi

gDi

hDi

t gB
N'B-

hB

N"di

X NV'D.

N"bi

-> AT» N"B

(3)

Naturality of g and h now yields

N"di o gDi = gFAi o N'di

= hFAi o N'di

= N"di o hDi

But since models are left exact, each N"di is still a monic, and therefore gDi — hDi,
for alH = 1,..., n.

Using naturality again, we get

gB o N'bi = N"bi o gDi

= N"bi o hDi

= hBo N'bi

But since models preserve the finite unions of subobjects {N'bi}f=l must be jointly
monic again, and therefore gs = /if,. Thus g = h, and F# is faithful.

For the converse, one assumes that there is B G B not subcovered by F, and,
using compactness, constructs models N' and N" and two homomorphisms g ^ h :
N' —► N" such that F*g = F*h. The details are in [22, thms. 7.1.6-6']. D

Logical meaning.

Proposition 2 tells that each A-model extends back along F* to some B-model
if and only if F : A —> B is faithful. However, this does not guarantee that every
A-homomorphism between A-models will extend to a B-homomorphism between their

41

extensions. Indeed, according to proposition 3, a necessary condition for this is that
F : A —> B is powerful.

Together, these conditons provide a basis for aligning syntactical and the seman-
tical definitions of parametricity, as described in section 4.2.4..

4.4. Characterizing parametric specifications

Theorem 1. For a coherent functor F : A —> B and the induced "reduct" F* :
Mod(B) —> Mod(A),, the following statements are equivalent.

(a) F is a powerful embedding.

(b) F# is subfull and essentially surjective.

(c) F* is a uniform retraction.

If Mod(B) has coproducts, then the above conditions are also equivalent with

(d) F* is coreflection.

Note that, since Mod(B) is finitely accessible, it has coproducts if and only if it
is locally finitely presentable, i.e. when B classifies an essentially algebraic theory [2,
sec. 3D].

Proof. (a)«=>(b) By proposition 1, it suffices to check that F is faithful and powerful.
By proposition 2, F is faithful if and only if F* is essentially surjective. By proposition
3, F is powerful if and only if F* is subfull.

To simplify the proof of (b)=^(c), we shall freely use the established equivalence
(a)^(b). Given that F* is essentially surjective and subfull, we thus know that F
is full, faithful and powerful. Using all that, we define $: Mod(A) —> Mod(B), such
that F*o$^ Id.

Since F* is essentially surjective, for every M in Mod (A), there is some L in
Mod(B) such that M = F*L. But the homomorphisms to or from M may not extend
to every such L, so we cannot simply take $M = L.

On the other hand, like any functor, M : A —> Set has the right Kan extension,
a functor F#M : B —Y Set [18], defined

F#M(B) = lim M o Cod (B/F) (4)

where B/F is the comma category, spanned by the arrows in the form B -^-> FA in
B. A morphism from B -^ FA to B -^ FC is an arrow g : A —> C in A such
that Fg o a = c. The image of B e B along F#M is thus the limit of the diagram

ß/F^AA Set.

42

The construction F# is functorial and it is not hard to see that F#oF# = Id holds
if and only if F is faithful. So F#M might be a candidate for <?M. But the assumption
that M : A —> Set is coherent does not generally follow for F#M : B —>• Set. The
i<#-image of an A-model M may not be a B-model, and the functor F# : SetA —> SetB

does not restrict to a functor Mod(A) —> Mod(B).
But the desired model $M : B —> Set can actually be "interpolated" between

the Kan extension F#M : B —> Set, and the arbitrary model L : B —> Set such
thatF#L^M.

First of all, since F* H F#, every F*L —> M induces L —> F#M. Given, as
above M ^ F*L, for every a : B —> FA in B, there is La : LB —> LFA ^ MA.
Hence a cone (La)aGB/F '■ LB —> Mo Cod (B/F). By definition (4), this cone induces
a unique arrow (j)B : LB —> F#M(B).

Let the functor <PM : B —> Set be defined as the monic image of <f>: L —> F#M,
i.e.

(f>B : LB—^$M(BY >F#M(B) (5)

This $M will indeed be a model. Although F#M : B —> Set is not a model, when
F : A —> B and M : A —> Set preserve (finite) limits, then F#M : B —> Set
weakly preserves them: for every (finite) diagram A : / —>■ B, the set i<#M(lim A)

is a weak limit of F#M(A) and thus contains lim F#M(A) as a retract.

Together with the coherence of L : B —> Set, this weak preservation property of
F#M suffices for the coherence of $M : B —> Set. E.g., it preserves the products
because the map from 4>M(B) x <1>M(D) to $M(B x D) on

LB x LD —* $M(B) x <2>M(D)< > F#M(B) x F#M{D) (6)

Y

L(B x D) ^$M{B x Df >F#M{B x D)

must be both surjective and injective.
The object part of $: Mod(A) —> Mod(B) is thus determined by (5). Notice that

is not unique, as the definition depends on the choice of L, F*L = M.
To define the arrow part of #, take an arbitrary A-homomorphism h : M' —> M"

. It surely induces a natural transformation F#h : F#M' —> F#M", and we can find
B-models V and L" that map by F* to M' and M", and determine B-models $M'
and <PM"; but h : M' —> M" in general does not lift to a homomorphism L' —> L".
However, $h : <?M' —> $M" can be derived from F#h : F#M' —> F#M" alone.

43

To simplify notation, write TV' = <?M' and N" = <PM" and k = $h for the desired
homomorphism.

We are given a natural family hA : M'A —y M"A and we want to extend it to
kB : N'B —> N"B, so that kFA = hA. In other words, we have the subfamily of
functions kFA : N'FA —y N"FA, A G A, and we need to complete it to a natural
family kB : N'B —» N"B, B e B.

Consider first, for each 5 G B, the set £B of regular epimorphisms e : .B —» FAe

in B. The e-th component of the limit cone F#M(B) —> MoCod(B/F) is a function
F#M{B) —y MAe. Hence the map

F#M(B)^UeeeBMAe (7)

Since F : A —y B is powerful, this map is injective. By postcomposing (5) with it,
one gets

(Le)ee£B : LB—^$M{B)t ^UeesB
LFAe (8)

because MAe = LFAe. Of course, since L is coherent, each Le : LB —> LFAe is a
surjection. The set $M(B) can thus also be obtained by taking the product of all sets
LFAe, such that there is some regular epi e : B —y FAe in B, and then extracting
from this product the image of the tuple formed by all epis Le : LB —» LFAe.

The construction of kB : N'B —y N"B now proceeds by the following steps:

(i) define a function

KB : N'B —)• p(N"B)

such that

KFA{X) = {hA(x)}

(ii) show that KB(X) is nonempty for every x € N'B;
(iii) show that KB{X) has at most one element for every x G N'B; writing kB(x)
for the only element of KB(X), we get the function kB : N'B —y N"B;

(iv) prove that the obtained family kB : N'B —y N"B, B e B is natural, i.e.
forms k : N' —y N".

(i) Using the same set £B of regular epis e : B —» FA as above, define

KeB(x) = (TV'e)-1 ohAo N'e{x)

KB(X) = P| KeB(x)
ee£B

44

For B = FA, KidFA(x) = {hA(x)}. Moreover, for every e e 8FA holds

KidFA(x) C KeFA(x) (9)

Indeed, since F is full, the naturality of h implies that the square

N'FA ——*■ N"FA

N'e N"e

N'FA —A—* N"FÄ

commutes. Hence (9), and thus KFA(X) = {hA(x)}, as asserted.
(ii) For every Bel, the set £B is nonempty because it surely contains the regular
epi part B -» FI >-» Fl = 1. Fl is terminal because F is coherent; the regular image
of B —> Fl is in the image of F because F is powerful.

Moreover, since N" is coherent, and B —» FI is a cover (regular epi) N"B —y
N"FI must be a surjection. So if N"B is empty, N"FI must be empty, and hence
N'FI must be empty, because there is a function hi: N'FI —> N"FI. But there is
also a function N'B —> N'FI, and thus N'B must be empty as well, so there is a
unique kB : N'B —> N"B, and we are done.

With no loss of generality, we can thus assume that N"B is nonempty. Since
N"e : N"B —> NFA, e e £B, is a surjection, all NFA are nonempty, and moreover,
every ne(x) = (We)"1 ohAo N'e(x) is nonempty.

Finally, for any e0 : B —» FA0 and ex : B —► i^n from SB the intersection
Keo n Kei is nonempty as well. Toward a proof, consider the pair (e0, e:) : ß —>
FA0 x FAx = F(A0 x T4I) in B. Factoring, and using once again the assumption that
F is powerful, we get e2 : B —» F^2, with a pair (p0,Pi) : A2 —> A0 x Ax in A such
that e* = Fft o e2, i = 0,1. But iVe* = ^"F^ o N"e2 implies

Ke2(x)C«;eo(a;)nftei(x)

for all x e N'B. Since K
E2
(X) has been proved nonempty, ne°(x) D Kei(a;) is.

A similar reasoning applies to any finite intersection of Kes. But for the quotients
e e SB in a coherent category B the compactness applies: if any finite family is
consistent, then the whole set together is. Therefore, KB(X) is nonempty.
(iii) So we can surely chose kB(x) e KB(X). NO matter which element we choose, the
equation

N"e okB = kFA o N'e (10)

45

will hold for every e G £B, because kFA = hA and the definition of KB implies

N"e OKB = HAO N'e

On the other hand, recall that N"B = $M"B was defined so as to make the function
(N"e)eesB injective. But this means that the set of equations (10), for all e G £B,
together determine at most one kB(x), since the functions N"e are jointly injective.

So the family hA : N'FA —> N"FA, A G A, extends to a uniquely determined
family kB : N'B —» N"B, B G B.
(iv) To prove that the family kB : N'B —► N"B is natural, take an arbitrary arrow
g:B0 —► J3i in B and an arbitrary ex : Bx —* FAX from £Bl. Let e0 be the coimage
of e\ o g

Ba ■Bl (11)

eo ei

FAfit- ■*FAi

The codomain of e0 is in the image of F because it is powerful.
We want to prove that the upper square in the diagram

N'B,
kBo

*■ N"B0

N'FAQ hAo
■ N"FA0

commutes. The lower square and the large outside trapezoid surely commute by the
definition of kB. The small trapezoid commutes by the naturality of h, and the two
triangles simply as the images of (11). Chasing, one concludes that

N"ei o kBx o N'g = N"ei o N"g o kB0

46

But ei was taken as an arbitrary element of £B1 , so the last equation holds for all
such. Since they are, by the construction of N" = $M", jointly monic,

kB! o N'g = N"g o kB0

follows.
This completes the proof of (b)=>(c). The converse (c)=4>(b) can be proved by

modifying [22, thm. 7.1.4-4']. The argument is lengthy, based on the Los-Tarski the-
orem, and I do not see a way to improve on it, so the reader may wish to consult the
original.

Finally, to connect (d) with the other three conditions, note that the assumption
of coproducts makes Mod(B) into a locally finitely presentable category, so that F*
must have a left adjoint, like in [10, § 5], obtained by restricting the left Kan extension
of F. Hence (d)<^>(a). But a proof of this was already in [11] and [15], albeit in a
slightly different setting. □

An immediate consequence of theorem 1 and proposition 4 is a precise syntac-
tic characterisation of definitional extensions, the interpretations F which induce an
equivalence F* between the model categories. The class is essentially larger than
assumed in any of the implemented versions.

Corollary 1. F* : Mod(B) —> Mod(A) is an equivalence if and only if F : A —> B
is a powerful embedding, and subcovering.

A proof of this can also be derived from Makkai-Reyes' conceptual completeness
theorem [22, thm. 7.1.8], which is the main result of their book.

4.5. Conclusions and further work

The research reported in this paper was originally motivated by the questions arising
from the semantics and the usage of SPEC WARE™, a tool for the automatic syn-
thesis of software systems, developed at Kestrel Institute. In particular, the original
semantics of pspecs as an abstract family of arrows [29] needed to be refined into
a precise syntactic characterisation and verified semantically. This task took us far
afield, into nontrivial model theory and functorial calculus, and brought about the
above theorem relating two extant notions of parametricity. As suggested at the end
of section 4.2.4., it can be viewed as an indexed completeness result. Formalizing this
view might lead to various conceptual and meta-theoretical insights.

But the question of the practical repercussions of the presented material, or of
their absence, seems even more interesting. The immediate task should probably be
to analyze closely related families of coherent functors, capturing the instantiations
and the implementations of theories. The practice of parametric specification is based

47

upon them as much as upon the family of pspecs, studied in the present paper. Some
important issues of refinement directly require this further analysis.

However, as we are not very far in any of these tasks, the main point of present-
ing this work currently is not this or that particular result, but showing categorical
model theory at work in the software specification framework and suggesting a first
step or two toward developing specific tools for analyzing and designing specification
frameworks.

If, as is often stated, the increasing complexities and dynamics of evolving software
development tasks make semantical analyses increasingly important, even indispens-
able in critical cases, then mathematical methods of the kind presented here may
come to play an increasingly important role, as they may provide enough abstraction
to resolve the concrete problems where formal methods are genuinely needed.

5. Other mathematical methods

In this section, we present three methods for structuring theories: limits, interpreta-
tions, and slicing. Limits allow us to find the "semantic intersection" of a collection
of a theories, interpretations allow us to relate specifications in a more general way,
and slicing allows us to split a theory into a collection of meaningful parts.

5.1. Limits

The category of specifications in Specware has all finite colimits. Not only are they
useful, but they are efficiently computable with a linear time algorithm. Do limits of
specifications exist? Would they be useful? Can they be computed efficiently when
they exist? As a special case, what is the product of two specifications? what it would
mean? how could it be used? Some potential uses of limit computations include:
slicing, evolution, filling out a partial parallel refinement.

There is a general result about categories that provides a remarkable inductive
computation of limits provided certain basic special cases exist.

Proposition 1. If a category has a final object and all pullbacks, then it has all
finite limits.

Proof: It is fairly easy to show that if a category has a final object, products, and
equalizers then it has all limits [4]. It can be further shown that if a final object and
pullbacks exist, then we can compute products and equalizers; e.g. the product of two
objects A and B is the pullback of the diagram A —>1-*— B where 1 is the final
object.

48

The diagram on the left gives a pullback situation. Given

specs A, B, and C and morphisms A —^C^— B , does

a cone A- -B exist such that
(1) the diagram commutes: g o i = h o j and
(2) the cone is universal: for any other cone

A-^— Q -^B (such that g o k = hoi there exists
a unique arrow u : Q -> P that factors k and £; i.e. such
that k = iou and i — jou. a

a
 The definition of cone includes commuting of diagram.

We approach the question of whether limits of specifications exist by examining
incrementally the following categories of interest:

SIG = Category of signatures and their morphisms; A signature consists of a set of
sort symbols and a set of (higher-order) operator symbols together with their arities.
A signature morphism maps each symbol of the domain signature to a symbol of the
codomain, such that the arities of each operator symbol is preserved under translation.
For example, suppose that the domain has sorts D, and R and operator /, and the
codomain has sorts E, and S and operator g. The map m is a signature morphism:
m = {/ i-> g, D »->■ E, R\-> S}. Note that m ensures compatible translation of the
arity of /. To put it another way, a signature morphism is required to preserve the
sort constructions of a signature, whether these constructions arise in giving the arity
of an operator or in explicit sort definitions.

A signature morphism translates an expression, such as an axiom, by context-free
translation of constituent symbols.

For simplicity we assume that the arity of an operator is built up from products
and function (exponentials). We assume that the boolean sort boolean and the logical
quantifiers and operators V, 3, A, V, -., =►, «=► are built in. All sorts are equipped
with an equality.

THY = Category of theories and their morphisms; i.e. an object in THY is a sig-
nature plus a set of sentences that are closed under entailment (called the theorems of
the theory). The morphisms are essentially signature morphisms, with the additional
condition that they translate theorems to theorems.

SPEC = the category of (higher-order) specs and their morphisms. An object in
SPEC is a signature plus a finite (or more generally recursive) set of sentences called
the axioms of the specification. The morphisms are essentially signature morphisms,
with the additional condition that they translate axioms to theorems. This condition
implies that the morphisms also translate theorems to theorems.

Say something about other sort constructions such as sums, quotients, and sub-
sorts? Same general idea, but the final object is just more complex?

49

Proposition 2. SIG has all finite limits.
Proof: We need to show that SIG has a final object and pullbacks. The final

object ISIG consists of one sort (say D) and one operator for each finite arity (i.e.
fmjTl : Dm —> Dn where m > 0 A n > 0). To show universality, note that there is
a unique arrow from an arbitrary signature S —>• ISIG which takes each sort to D
and each operator of S to the unique operator in ISIG that guarantees signature
compatability.

The pullback of signatures is the fiber product over C of the sorts and ops. If 7
is a sort of C, then the fiber over 7 is <7-1(7) x /i_1(7). The elements of this fiber are
pairs of sorts, say {a,ß}, which can be thought of as the sort product a x ß. If c is
an operator of C, then the fiber over c is g~l{c) x h~1(c). The elements of this fiber
are pairs of operators, say (a : D —> R,b : E —>■ S), which can be thought of as the
function product axb: DxE-^RxS such that a x b : (d,e) >-> (f(d),g(e)).

To show universality, let A-^— Q —j^-B be another cone. Define the universal

arrow u : Q —>• P as follows. For sort a in Q, let u : a i-> a x ß if k(q) = a and
i[q) = ß. For each operator q of Q, let u : q i->- a x b if k(q) = a and £(q) = b. This is
unique since no other translation will commute. QED

The pullback in SIG can be easily computed in time that is 0(max(\A\, \B\,\P\))
(which is at most \A\ x \B\).

Next we look at limits in the category of theories, THY. The key idea here is that
a theorem in the pullback corresponds to theorems in the components A and B that
have the same abstract form as some theorem in C. (clarify!)

Proposition 3. THY has all finite limits. 6

Proof: We need to show that THY has a final object and pullbacks. The final
object in THY is essentially the final object of SIG ISIG together with the set of all
sentences constructable in that language. Naturally it is inconsistent.

To show universality, simply note that there is a unique arrow from the signature
of an arbitrary theory T —> ITHY and that it translates each source theorem to the
unique theorem in ITHY that has the same abstract form.

The pullback of theories extends the pullback on the underlying signatures. The
fiber over a theorem t of C is essentially t?-1^) x h"1^). Each theorem in the fiber
corresponds to a pair (t^, tß) and can be represented in the language of P as follows1.
First, note that t, t^, and tß have the same abstract form because of the context-
free way that the underlying signature morphisms translate expressions. We define a
function that recursively translates a pair of expressions into the language of P:

Translate(V(x : sA)PA(x), V(z : sB)PB(x)) = V(z : SAXsB)Translate(PA(a;),PB(a:))
Translate^ PAAQA, PB^QB) = Translate^(x), PB(a;))ATranslate(QA(^), QB(X))

6 Should the pullback in THY include all defined ops? What if the pullback in SIG is empty, yet the pullback
in THY could Have lots of paired theorems if the right ops were there...

50

Translate(fA(aA), fB(aB)) = fA X fB(Translate(aA,aB))
Translate(cA, cB) — cA x cB (for constants cA and c#)
and so on. The existence of the sort sA x sB in P is guaranteed by the context-

free translation of expressions by signature morphisms and by the assumption that
g(tA) = t = h(tB). Similar guarantees apply to fA x fB, cA x cB, etc.

We need to show that this object is a theory; i.e. it is closed under entailment (or
logical consequence). A sketch:7 Consider a set of theorems of P that are formed as
defined above, call them {tpe}e=i,...,n- By construction we have

for e = 1, ...,n. Suppose that we can infer tp from {£pe}e=i,...,n via rule R- Under the
mild assumption that R acts on the syntactic form of theorems, then the analogous
inferences will made in A, B, and C, so we have

i.e. inductively we have tA, tB, and tc as theorems of A, B, and C respectively, so tp
is a theorem of P by construction. Consequently, P is closed under inference and it
forms a theory.

We also need to show that i and j are theory morphisms and that the square
commutes. The projection morphisms i and j simply unpack the theorem tA x tB into
tA and tB respectively (from whence it was formed). The diagrams above indicate the
essential reason for the commuting of the diagram.

To show universality, define the universal arrow u : Q —> P as we did in SIG.
We must show that it translates theorems to theorems and that it factors k and t.
Suppose that
7 We do induction on the proof structure of an arbitrary theorem in P.

51

then

shows the action of u and the factoring of k and £ with respect to theorems. QED
Corollary 1. The product of two theories exists and is comprised of theorems

that have the same abstract form in both A and B (clarify!).
Next we look at limits in the category of specs, SPEC Unfortunately these do not

in general exist. For example, The final object in SPEC, ISPEC, must be a finite (or
recursive) presentation of ITHY ■ One can imagine some meta-machinery for presenting
this finitely, such as an algorithm for enumerating it, but this is not a straightforward
presentation format.

A more difficult question is the existence of a finite/recursive axiomatization of
a pullback theory. If we just consider the pullback on the axioms of A and B, there
may be none with the same arity-structure, so the fiber product of theorems would
be empty (which is not a sufficient axiomatization!).

A special case: if we consider the product of a spec with itself (e.g. the product of
group theory), then we do get an axiomatization of the product, which is isomorphic
to the spec itself (so the product of groups is a group!).

Nevertheless, pullbacks do exist for a wide subcategory of SPEC. Monies in SPEC
correspond exactly to morphisms in which the underlying signature morphism is in-
jective and axioms translate to axioms (?). Monies in SPEC include identity arrows,
tranlate arrows, definitional extensions, c-def arrows, imports/inclusions/extensions,
conservative arrows, and compositions of these.

Proposition 4. Pullbacks of monies exist in SPEC.

52

Proof: The key idea is that the fiber over a symbol or axiom is a singleton set.
We show this result for simple inclusions, but the generalization to arbitrary mon-
ies is straightforward. Suppose that g and h are inclusions, then symbols(P) =
symbols(A) D symbols(B) and axioms(P) = axioms(A) D axioms(B). Note that
each symbol in the axioms of P must be symbol in both A and B, so the presentation
of P is closed8. Next note that P is included in A and in B, so we have a cone.

To show universality, let A*— Q —j^B be another cone. Since Q is included in

A and in B, it must be included in A n B which is P. Such an inclusion is unique.
QED

Proposition 5. Pullbacks (when they exist) preserve identity arrows, translate
arrows, definitional extensions, c-def arrows, imports/inclusions/extensions, conser-
vative arrows, and monies, and p-spec arrows.

5.2. Interpretations

In the 1970's, Goguen and Burstall discovered the use of pushouts to instantiate
parametrized specifications. In Specware, we tried to generalize this idea and use
pushouts to instantiate parametrized interpretations; however, it didn't seem to work.
We named this problem "triv-to-triv-via-subsort", after one of the proposed but un-
satisfactory solutions.

This section proposes to solve this problem by recasting interpretation morphisms
as squares of interpretations rather than triples of morphisms.

As an example, let's try to instantiate List-to-List (the identity) with Odd-to-Nat.
We expect to obtain an interpretation from List[Odd] to List [Nat]. For reference,
here's the mediator of Odd-to-Nat:

spec Odd-as-Nat is
import Empty
sort Odd = Nat I odd?

end-spec

We try to take pushouts according to this diagram:

List •* Triv *■ Odd

'■

extra constraint on a spec?

List ■< Triv -•••> Odd-as-Nat

i it f f f
List ■< Triv *- Empty

53

However, we cannot define a suitable morphism from Triv to Odd-as-Nat. If we map
E to Odd then the upper square commutes. If we map E to Nat then the lower square
commutes. We can't have both.

To fix the problem, we tried replacing Triv-to-Triv with Triv-to-Triv-via-Subsort:

spec TRIV-as-TRIV-via-SUBSORT is
sorts E-dom, E-cod
sort E-dom = E-cod I p?
op p? : E-cod -> Boolean

end-spec

We can find an interpretation morphism from Triv-to-Triv-via-Subsort to Odd-to-Nat,
but not to List-to-List:

List ■< Triv *- Odd

?
List "■-'■ Triv-as-Triv-via-Subsort *- Odd-as-Nat

i t t
f f f

List ■« Triv »■ Empty

So this idea pushes the problem around but doesn't solve it.
In the example above, we tried to construct an interpretation from the ListfOdd]

to List [Nat]. Although this seems reasonable, it is not. To see why, let's try a similar
example that makes the error more apparent. Instead of Odd-to-Nat, let's try Pair-
to-Nat, which refines an abstract sort Pair to a pair of naturals:

spec Pair-as-Nat is
import Empty
sort Pair = Nat, Nat

end-spec

If the instantiation were to succeed, we would obtain a refinement from List [Pair] to
List [Nat]. What would this refinement look like? We could keep two lists of naturals,
one for the left component, one for the right. Such a construction depends on an
injection:

List (Pair (A)) -> Pair (List (A))

However, this is not what we want. We want to refine ListfPair] to List [Nat x Nat],
not List [Nat].

54

It turns out that we can obtain the desired result by replacing interpretation
morphisms with commuting squares of interpretations. Thus:

A C

becomes

B D

Then there is no problem constructing the appropriate diagram:

List <= Triv => Pair

4 «0- v
List <^= Triv ==> Empty

The interpretation from Pair to Empty constructs pairs of naturals, as does the inter-
pretation from Triv to Empty; thus, the right square commutes. The upper pushout
constructs List [Pair] and the lower one constructs List [Nat x Nat], as desired.

5.3. Slicing

The term "theory slicing" refers to two different problems:

— To factor specifications into pieces that are likely to be reusable.
— To eliminate operators and axioms that not needed for a given set of operator

definitions.

We only discuss the second kind here; its primary use is in code generation to minimize
the size of the target code.

We structure the relationship between sets of operations and axioms using Galois
connections.

A partial order is a set A with a relation < that is reflexive, transitive, and
antisymmetric. Antisymmetric means that a < b and b < a implies a = b.

A Galois connection or Galois pair (F, G) is a pair of monotone functions

F:A-^B
G:B->A

between partial orders A and B such that a < GFa and FGb < b.
An isomorphism is a Galois connection in which a = GFa and FGb = b. Unlike

an isomorphism, a Galois connection is asymmetric: (G, F) may not be Galois even
if (F, G) is. The categorical concept of adjunction further generalizes a Galois pair,
but we don't need adjunctions here.

55

Given a spec S, let Axiom be the set of all axioms in S and let Op be the set of all
operators. We define Axioms = V Axiom and Ops = V Op. That is, Axioms and Ops
are the sets of all subsets of axioms and operations. That is, an element of Axioms is
a set of axioms. The sets Axioms and Ops are preorders, ordered by set containment.

We can define functions

F : Axioms —> Ops
G : Ops —> Axioms

so that F maps a set of axioms to the set of operations used by the axioms, and
G maps a set of operators to the set of axioms that use at most these operations. F
is monotone because more axioms use more operators, and G is monotone because
more operations allow us to state more axioms.

The function GF takes a set of axioms a to the (larger) set of axioms stateable
using the operators of a. The function FG takes a set of operators b to the (smaller)
set of operators that actually occur in the axioms stateable using b. Thus (F, G) is a
Galois pair.

An equivalent formulation of Galois pair is that for all a and b,

Fa<b <=> a < Gb

and it is worth checking that this condition also holds in our example.
For any Galois connection, we can show that the composites FG and GF are

closure operators, that is, that they are idempotent, that is, that FGFG = FG and
GFGF = GF. Thus, we only need to apply these operators once; applying them
further has no effect. Here is the idempotence proof for GF:

a < GFa assumption
GFa < GFGFa monotonicity of GF
FGb < b assumption
FGFa < Fa substitution of Fa for b
GFGFa < GFa monotonicity of G
GFGFa = GFa antisymmetry of <

A partial order with complement is a partial order A with an operation __c: A —> A
such that

(ac)c = a and
a < b <=^ bc < ac

Given a monotone function F : A —> B, we can define Fc : A —)■ B by Fca =
F(ac)c. Then, if (F, G) is a Galois pair, so is (Fc, Gc):

56

Gcb <a
G(bc)c < a definition of Gc

ac < G(bc) complement reverses order
F(ac) <bc F and G are Galois
(bc)c < F(ac)c complement reverses order
b < F(ac)c complement is an involution

<^=> b < Fca definition of Fc

In our example, Fca is the set of operations that don't occur outside a, and Gcb
is the set of axioms that use some operation from b. Fc is hard to grasp, but Gc is
quite natural.

The map GCFC takes a set of axioms a to the subset obtained by throwing out
axioms all of whose operations occur outside a. The map FCGC takes a set of operations
b and enlarges it by examining the axioms that don't touch b and adding the other
operations they don't use. As before, both these maps are idempotent.

There is another pair of Galois connections available to us. For the moment, we
define a specification to be a pair (O, A) of operations and axioms such that ops ACO.
Then the subspecifications of a spec S form a partial order with complement VS under
pairwise containment.

We define four monotone functions from V(S) to itself:

Ms = remove all operations not used in axioms
Ns = add all operations of S to s
Is = remove all axioms of s
Js = add all axioms stateable using operations of s

Then (M, N) and (I, J) are both Galois.

References

1. J. Adämek, P.T. Johnstone, J.A. Makowsky, and J. Rosicky. Finitary sketches. Journal of Symbolic

Logic, 62:699-707, 1997.
2. J. Adämek and J. Rosicky. Locally Presentable and Accessible Categories, volume 189 of LMS Lecture

Notes. Cambridge University Press, 1994.
3. James Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(ll):832-843, 1983.
4. Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice-Hall, Englewood

Cliffs, NJ, 1990.
5. Lee Blaine, Limei Gilham, Junbo Liu, Douglas Smith, , and Stephen Westfold. Planware - domain-

specific synthesis of high-performance schedulers. In Proceedings of the Thirteenth Automated Software
Engineering Conference, pages 270-280. IEEE Computer Society Press, October 1998.

6. R. M. Burstall and J. A. Goguen. The semantics of Clear, a specification languge. In D. Bjorner, editor,
Proceedings, 1979 Copenhagen Winter School on Abstract Software Specification). Springer LNCS 86,
1980.

57

7. Th. Dimitrakos. Formal Support for Specification Design and Implementation. PhD thesis, University
of London, 1998.

8. H. Ehrig and M. Größe-Rhode. Functorial theory of parametrized specifications in a generalized speci-
fication framework. Theoretical Computer Science, 135:221-266, 1994.

9. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and Constraints,
volume 21 of EATCS Monographs in Theoretical Computer Science. Springer, 1990.

10. P. Gabriel and F. Ulmer. Lokal Präsentierbare Kategorien, volume 221 of Lecture Notes in Mathematics.
Springer, 1971.

11. H. Ganzinger. Parametric specifications: parameter passing and implementations with respect to ob-
servability. ACM Transactions on Programming Languages and Systems, 5:318-354, 1983.

12. J. Goguen. Parametrized programming. Transactions on Software Engineering, 10(5):528-543, 1984.
13. J. Goguen. Principles of parametrized programming, pages 159-225. Addison-Wesley, 1989.
14. J. Goguen and R.M. Burstall. Cat: a system for the structured elaboration of correct programs from

structured specifications. Technical Report CSL 118, SRI, 1980.
15. J. Goguen and J. Meseguer. Universal realization, persistent interconnection, and implementation in

abstract modules. In Proceedings of the Ninth ICALP, LNCS 140, pages 265-281. Springer, 1982.
16. Cordell Green. Application of theorem proving to problem solving. In Proceedings of the First Interna-

tional Joint Conference on Artificial Intelligence, pages 219-239, 1969.
17. Kestrel Institute. Specware Language Manual, 1998. Available from keepflkestrel.edu.
18. S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics.

Springer, 1971.
19. F.W. Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis, Columbia University, 1963.
20. M. Makkai. Stone duality for first order logic. Advances in Math, 65, 1987.
21. M. Makkai and R. Pare. Accessible Categories: The Foundations of Categorical Model Theory, volume

104 of Contemporary Mathematics. American Mathematical Society, 1989.
22. M. Makkai and G. Reyes. First Order Categorical Logic, volume 611 of Lecture Notes in Mathematics.

Springer, 1977.
23. E. Manes. Algebraic Theories. Springer, 1976.
24. J. Meseguer. General logics. In H. Ebbinghaus, editor, Logic Colloquium 87, pages 275-329. North

Holland, Amsterdam, 1989.
25. Douglas R. Smith. Constructing specification morphisms. Journal of Symbolic Computation, Special

Issue on Automatic Programming, 15(5-6):571-606, May-June 1993.
26. Douglas R. Smith. Toward a classification approach to design. In Proceedings of the Fifth International

Conference on Algebraic Methodology and Software Technology, AMAST'96, volume LNCS 1101, pages
62-84. Springer, 1996.

27. Douglas R. Smith. Mechanizing the development of software. In M. Broy and R. Steinbrueggen, editors,
Calculational System Design, Proceedings of the NATO Advanced Study Institute, pages 251-292. IOS
Press, Amsterdam, 1999.

28. Y. V. Srinivas and Richard Jüllig. Specware: Formal support for composing software. In B. Moeller,
editor, Proceedings of the Conference on Mathematics of Program Construction LNCS 947, pages 399-
422. Springer, Berlin, 1995.

29. Y.V. Srinivas. Refinement of parametrized algebraic specifications. In R. Bird and L. Meertens, editors,
Algorithmic Languages and Calculi, pages 164-186. Chapman & Hall, 1997.

30. C. Strachey. Fundamental concepts in programming languages. Unpublished lecture notes, 1967.

58

DISTRIBUTION LIST

addresses number
of copies

CRAIS S- ANKEN 5
AFRL/IFTD
525 BROOKS ROAD
ROME/- NY 13441-4505

KESTREL INSTITUTE
3260 HILLVIEW AVENUE
PALO ALTÖ* CA 94304

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC »KY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE 0944
FT. 8ELV0IR, VA 22060-621«

DEFENSE ADVANCED RESEARCH
PROJECTS ASENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

SOFTWARE ENSR'S INST TECH LIBRARY
ATTN: MR DENNIS SMITH
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-3890

AFIT/ENS
ATTN:TOM HARTRUM
WPAF9 OH 45433-6583

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR. WILLIAM £. HEFLEY
CARNEGIE-MELLON UNIVERSITY
304 OAK GROVE CT
WESFORD PA 15090

DL-1

AFIT/ENG
ATTN: DR GARY B- LAMOMT
SCHOOL OF ENGINEERING
DEPT ELECTRICAL & COMPUTER ENGRG
WPAF8 OH 45433-6533

NSA/OFC OF RESEARCH
ATTN: HS MARY ANNE OVERMAN
9800 SAVAGE ROAD
FT GEORGE G- MEADE NO 20755-6000

DARPA/ITO
ATTN: DR KIRSTIE BELLNAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS COLBERT
MAIL CODE PT4
HOUSTON TX 77058

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DABROWSKI
ROOM A266, 3LDS 225
GAITHSBURS MD 20899

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
N\TN£X SCIENCE 8 TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLAINS NY 20604

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT 8REAUX/C0DE 252
12350 RESEARCH PARKWAY
ORLANDO FL 32826-3224

DR JOHN SALASIN
DARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR BARRY 80EHM
DIR/- USC CENTER FOR SW ENGINEERING
COMPUTER SCIENCE DEPT
UNIV OF SOUTHERN CALIFORNIA
LOS ANGELES CA 90089-0781

DL-2

DR STEVE CROSS
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3391

OR. DAVE GUNNING
DARPA/ISÖ
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

SPAUARSYSCEN D442Q9
ATTN: LEAH WONG
53245 PATTERSON ROAD
SAN DIEGO* CA 92152-7151

SPAWARSYSCEN D4123
ATTN: LES ANDERSON
53560 HULL STREET
SAN DIEGO CA 92152-5001

DIRNSA
ATTN: MIC«**!. 3- WARE
DOD, NSA/CSS <R23)
FT- GEORGE G. MEADE MD 20755-6000

INSTITUTE OF TECH DEPT OF COUP SCI
ATTN: DR. JAIDEEP SRIVASTAVA
4-192 EE/CS
200 UNION ST SE
MINNEAPOLIS, MN 55455

AFRL/IFT
525 BROOKS ROAD
ROME, NY 13441-4505

AFRL/IFTM
525 BROOKS ROAD
ROME, NY 13441-4505

«U.S. GOVERNMENT PRINTING OFFICE: 2000-610-055-10024

DL-3

MISSION
OF

AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

